Data Infrastructure

Carelyn Campbell, Ben Blaiszik, Laura Bartolo

November 1, 2016

MATERIAL MEASUREMENT LABORATORY

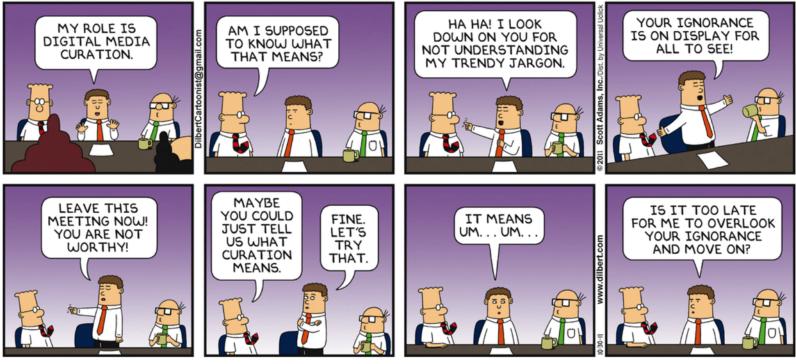
Data Landscape

Collaboration Tools (e.g. Google Drive, DropBox, Sharepoint, Github, MatIN)

Data Sharing Communities (e.g. Dryad, FigShare, NanoHub, Kaggle, NDS)

Data

Curation


Software

Data Repositories (e.g. Aflow, MaterialsProject, OQMD, NIMS MaterialNavi, NoMaD, Materials Universe)

Data Analysis

Tools

What is Data Curation?

Scott Adams, October 30, 2011

Data curation is the active and ongoing management of data through its lifecycle of interest and usefulness to scholarship, science, and education.

http://ischool.illinois.edu/academics/degrees/specializations/data_curation

LEARN NETWORK ADVANC

Materials Data Curation Tools

NIST	Name -	Services 1 Login	Maily Contact
	Materials Resource Regist	y ^{Beta}	
	MARCH FOR RESOURCES ADD YOUR RESOU	RCE	
Find Materia	la Data	_	
Find Materia	als Data	tes 1ge	
This system allows for the registr	ation of materials resources, bridging the gap between existing resources	New You Training	
This system allows for the registr and the end users. The Materials			
This system allows for the regist and the end users. The Materials registered information available	ation of materials resources, bridging the gap between existing resources. Resource Registry functions as a centrally located service, making the for research to the materials community.	Services	
This system allows for the registe and the end users. The Materials registered information available This is being developed at the N	ation of materials resources, bridging the gap between existing resources. Resource Registry functions as a controlly located service, making the	Service Search for resources	

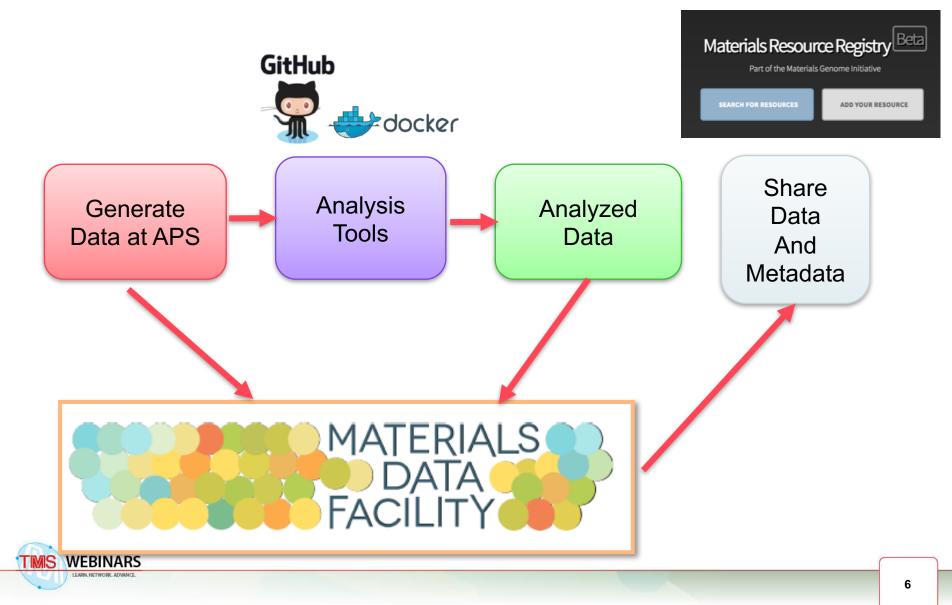
Representative list of tools focused on materials data, but not comprehensive

Data Model Definition

Defines the structure of metadata and data

Measurement Data Model

Metadata e.g.

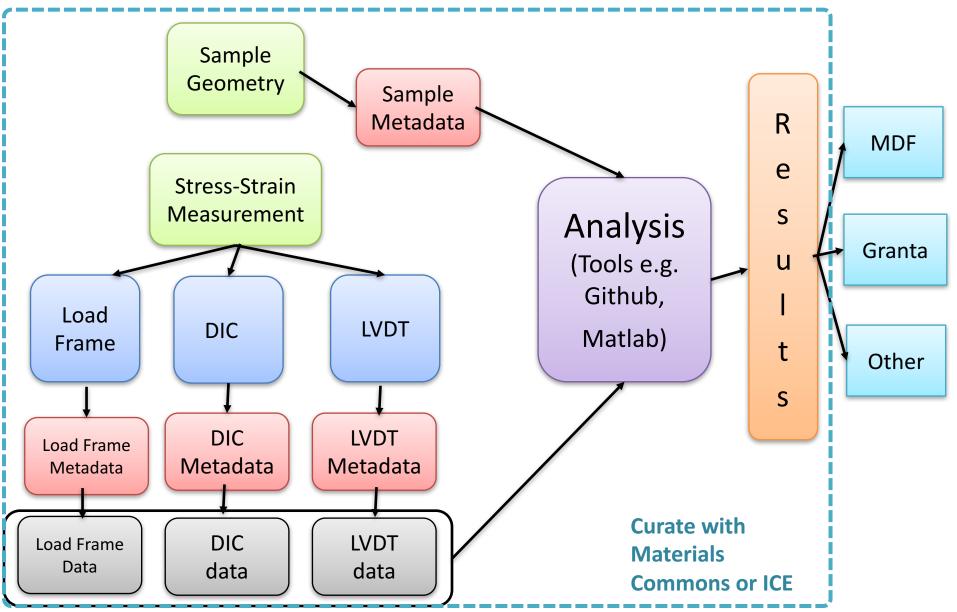

- Sample owner
- Date of measurment Kα1
- Sample stage position
- Apparatus temperature

Data e.g.

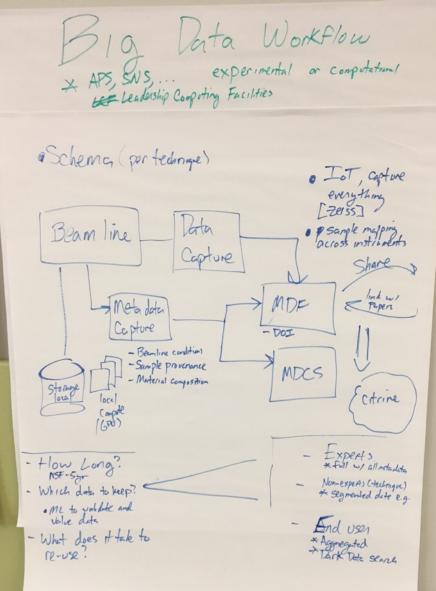
- As XML
- Raw data (text, ASCII, binary)
- Imported table
- *Link to image or raw data

Example APS Data (Large Data Example)

Workflows


- Large Data sets: Single Point Source (e.g. APS)
- Experimental data (small to medium size), multiple source generation
- Computational Data

• Infrastructure Selection Tool


Stress-Strain Measurement

O Measurement Data Experimental Data Workflow 1 Resi *TCE 1 Workflow *Material Commons 19 DCS 4CEED (Microscopy) * Small -> Medium * Multiple modalities (2) Measurement Analysis Example: Stress-Strain Curve ost-it MTS-result Sample Geometry Resalts Dh DIC Matlab Measurement achinemeta DICSONAC LVDD Final Streas-Stress-Strain Measuronent MIS Ralibrat ASE Storg

Experimental Workflow: Stress-strain Measurement

Big Data Workflow

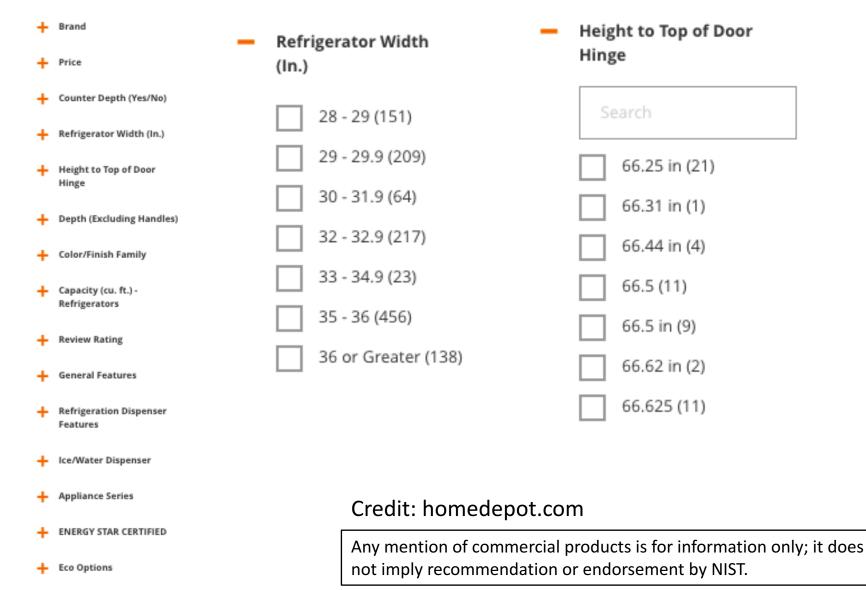
Computational Data Workflow

- Lots of different techniques
- PhaseField modeling: no standards.
- Community standards needed

- Codes changes quickly
- Social change needed.
- FEM more benchmark. -- more standardize

How do I select a Materials Data Infrastructure Tool?

Example: Workflow Tool Selection


ournal of Grid Computing (2006) 3: 171–200 DOI: 10.1007/s10723-005-9010-8	© Springer 2006					18
		Table 2. Workflow	design taxonomy ma	pping.		
A Taxonomy of Workflow Management Systems for	r Grid Computing	Project name	Structure	Model	Composition systems	QoS constraints
	on a company	DAGMan	DAG	Abstract	User-directed • Language-based	Us r specified rank expression for desired resources
lia Yu and Rajkumar Buyya* Grid Computing and Distributed Systems (GRIDS) Laboratory, Department (of Commuter Science	Pegasus	DAG	Abstract	User-directed • Language-based Automatic	N/A
und Software Engineering, The University of Melbourne, Melbourne, Austro E-mail: raj@cs.mu.oz.au		Triana	Non-DAG	Abstract	User-directed Graph-based 	N/A
Received 28 May 2005; accepted in revised form 6 December 2005		ICENI	Non-DAG	Abstract	User-directed • Language-based • Graph-based	Metrics specified by users
		raveina	DAG	Abstract/concrete	• Language-based • Graph-based	N/A
<i>ey words:</i> Grid computing, resource management, scheduling, taxonomy, w	orkflow management	GridAnt	Non-DAG	Concrete	User-directed Language-based	N/A
bstract		GrADS	DAG	Abstract	User-directed • Language-based	Estimated application execution tit

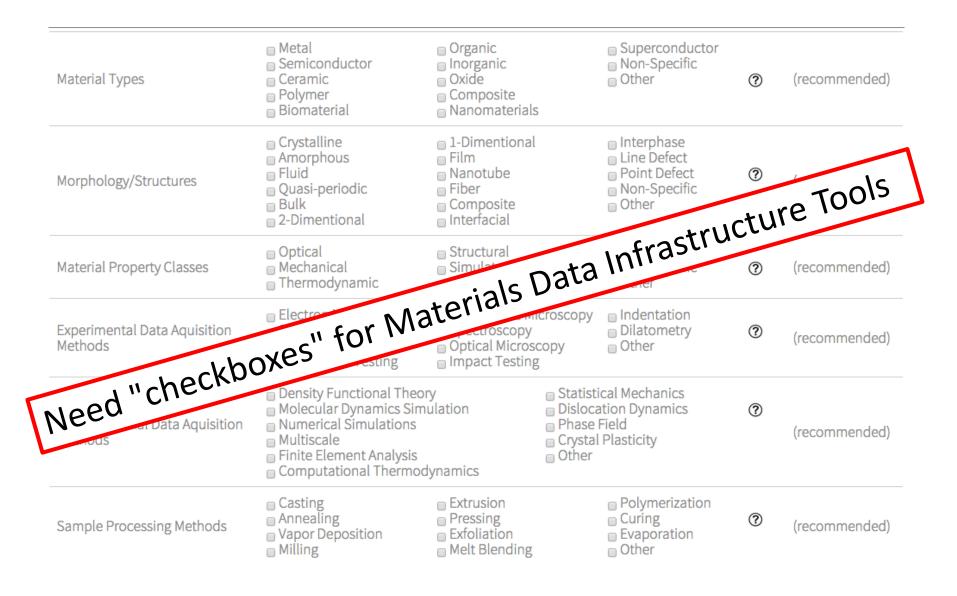
With the complex resources Therefore computin building develope onomy n workflov

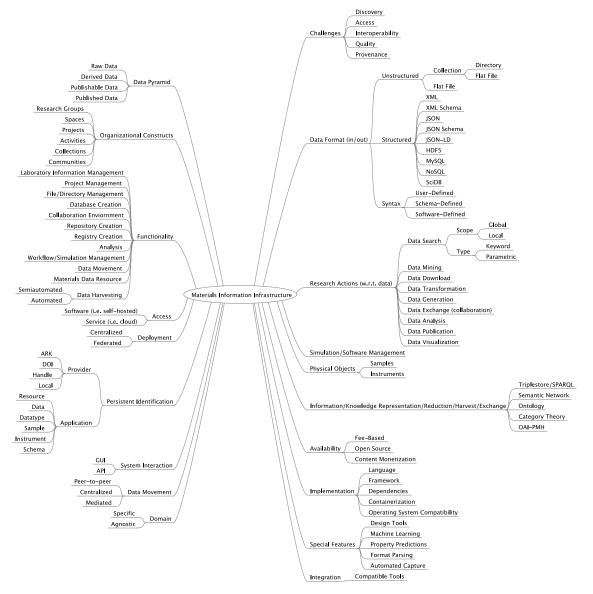
Table 2. Workflow design taxonomy mapping.

Project name	Structure	Model	Composition systems
DAGMan	DAG	Abstract	User-directed
			 Language-based
Pegasus	DAG	Abstract	User-directed
-			• Language-based
			Automatic
Triana	Non-DAG	Abstract	User-directed
			• Graph-based
ICENI	Non-DAG	Abstract	User-directed
			 Language-based
			• Graph-based

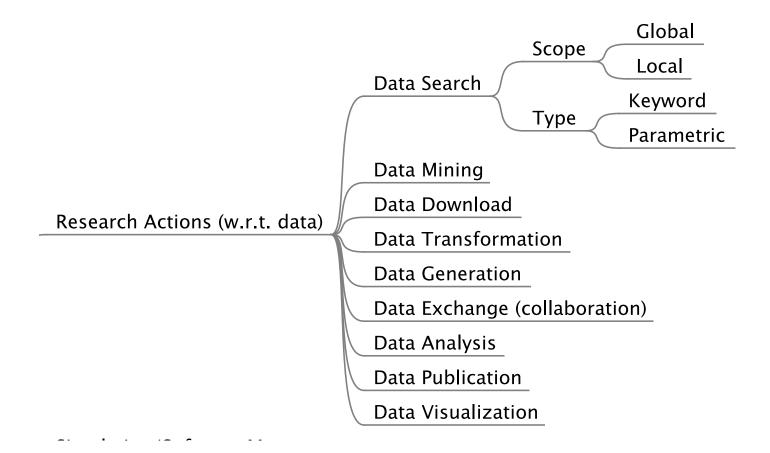
Example: Hardware Store Website

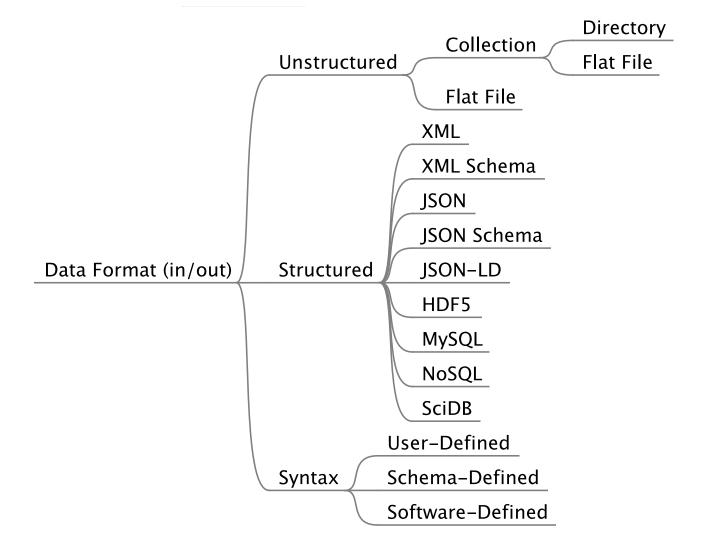
Example: Used Car Website


Price	+
Mileage	+
Years	+
Used / New	+
Make	+
Туре	+
Features	+
Size	+
Exterior Color	+
Interior Color	+
MPG City	+
MPG Highway	+
Cylinders	+
Transmission	+
Packages	+
Domestic / Import	+
Store	+


MPG CityFeaturesOver 20 MPG city (4507)Adjustable Suspension
(98)Over 25 MPG city (1875)Air Conditioning (8091)Over 30 MPG city (459)Alloy Wheels (6688)Over 35 MPG city (256)Auto Cruise Control (217)Over 40 MPG city (191)Automated Parking (46)

Credit: carmax.com


Any mention of commercial products is for information only; it does not imply recommendation or endorsement by NIST.


Registry: Materials Data Infrastructure Tools

Laboratory Information Management Project Management File/Directory Management **Database** Creation **Collaboration Enviornment Repository Creation Functionality Registry Creation** Analysis Workflow/Simulation Management Data Movement Materials Data Resource Semiautomated **Data Harvesting** Automated

Notes from Summit Wrap-up Session

- Integrate tools into undergraduate education
 - Tools need to more user friendly
- Embed data experts into experimental groups
 - Alternate: floating data experts available for experimental groups.
 - Need to define skills needed for these data experts
- Encourage more conference exchanges at Data Analytics and Materials communities
- Define data curation guidelines/code
 - Benefit to users
- Data Challenge (Student)
 - Prize for data set
 - Best paper/DOI/PID
- Develop implementation path
- Improve peer recognition
- Develop data cite profile

Interest in following up with small working groups on specific issues.

Data Cit. Profile

Tool Integ. into undergrad edu - More userfriendly

Embedding data into exp. on floating data expents. groups

Data Analytics/Materials conf. exchange

Guidelines for data curation/ (Benetitions) code Data Challenge (studint-band) -prize -best paper/DOI-PID

Peer recognition Role/Function Implementation Path

