Incorporating Computational Modules in Undergraduate MSE Courses

Katsuyo Thornton
University of Michigan, Ann Arbor

Mark Asta
University of California, Berkeley

This work is currently funded by the National Science Foundation under grant No.DMR-1410461
Outline

• Motivation
• Implementation of CMSE in Education
 – General discussion
 – Examples from UM
 – Summer School for ICMEd
• Summary
Motivation: MSE is Evolving

Diving Forces:
• Materials Genome Initiative & funding
• Growing computational power
• Wider availability of computational tools
• Demonstrated utility of computational approaches

... This initiative offers a unique opportunity for the United States to discover, develop, manufacture, and deploy advanced materials at least twice as fast as possible today, at a fraction of the cost.

President Barack Obama, 24 June 2011
Announcing the Materials Genome Initiative
Motivation: MSE is Evolving

Diving Forces:
- Materials Genome Initiative & funding
- Growing computational power
- Wider availability of computational tools
- Demonstrated utility of computational approaches

Education and training is essential for a rapid integration of computational tools, digital data, and experiments.

President Barack Obama, 24 June 2011
Announcing the Materials Genome Initiative
Many targets, different approaches

| Undergraduate Education | • Stand-alone courses
| | • Module integration into courses (JHU) |
| Graduate Education | • Degree & certificate programs (NWU)
| | • Summer schools (Texas A&M) |
| Continuing Education | • Short courses & workshops (TMS, PRISMS)
| | • Online webinars/courses (TMS, ASM, ...) |
| Instructor Training | • Short courses/summer school (ICMEd)
| | • Online resources (nanoHub) |

Above examples are not a complete list.
Motivation: Surveys on Comp. MSE Education

TOPICAL REVIEW

Current status and outlook of computational materials science education in the US

K Thornton1 and Mark Asta2

1 Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
2 Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA

In MSMSE, 2005

In JOM, 2009
Summary of Issues Raised

• **Limited availability of faculty** in implementation of CMSE components in MSE curricula.

• Practical concerns of **reallocation of resources** to enable implementation of CMSE into education.

• Employers finding **gaps between tools taught and those commonly in use**.

• **Web-based dissemination** of educational materials for CMSE alone **may not be optimal**.
Many computational faculty are aware, but do not utilize resources on the web!
How to Integrate Computation Into MSE Curriculum

- **Stand-alone course(s) in CMSE**
 - Traditional way; can be with hands-on component
- **Modules within existing standard courses**
 - Easier to synchronize/link theory & computation
- **Integration into laboratory/design courses**
- **Seminar course focused on CMSE**
 - Could be a second course for an instructor where the course load is > 1 per term
- **Undergraduate research in CMSE**
 - Small group research enables more reach and potentially better outcome
Computational MSE Education @ UM

• Integration of tools into individual courses
 – Thermodynamics, mechanical behavior of materials, metallurgy

• Coordinated experimental-computational laboratory
 – About half of the course is computational

• Senior-Level elective computational materials science course
 – Overview including atomistic to continuum modeling
 – Emphasis on hands-on experience; laboratory module on most techniques
 – Seniors uses the techniques learned in the course in Senior Design
All engineering students are required to take a programming course (MATLAB/C++) in the first year.

<table>
<thead>
<tr>
<th>Year/Term</th>
<th>Courses</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior/Fall</td>
<td>Junior Lab I (Exp/Comp)</td>
<td>Required</td>
</tr>
<tr>
<td>Junior/Winter</td>
<td>Junior Lab II (Exp/Comp)</td>
<td>Required</td>
</tr>
<tr>
<td>Senior/Fall</td>
<td>Computational Approaches in MSE</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>Senior Design I</td>
<td></td>
</tr>
<tr>
<td>Senior/Winter</td>
<td>Senior Design II</td>
<td>Required</td>
</tr>
</tbody>
</table>

General Progression for MSE UG @ UM
Integration into Required Courses

• **It is essential that computation is introduced in required courses**
 – Higher enrollment in elective courses on CMSE

• **A model may include shared TA (UIUC)**
 – Also, some research scientists may be interested in teaching experience

• **Another model: Lab modules**
Advantage of Introducing CMSE in Lab is the Long Duration

• **1st hour: Shock & resentment**
 – “Do we really have to do this?!?”
 – “I don’t know what we are supposed to be doing.”

• **2nd hour: Acceptance**
 – Most quietly work on the problems

• **3rd hour: Seeing the fruit of the labor**
 – The lab starts to be filled with excitement

• **4th hour: Joy!**
 – “I just wanted to thank you for creating the MSE365 computational kinetics lab... We have been studying spinodal decomposition in Metals class, and this lab finally got me to understand its finer details.”
Instructor Training: Summer School for Integrated Computational Materials Education

- Was supported by NSF with supplemental funding of Michigan Center for Theoretical Physics and TMS in-kind support
- Educate the educator (graduate students, postdocs and faculty)
- The two-week program includes
 - a “crash course” on computational materials science
 - focus sessions on educational modules that can be adopted into existing core courses
- The “Fellows” will take their knowledge & materials back to their institutions and teach computational materials science modules within existing required undergraduate courses
- Key Contributors: Mark Asta, Edwin Garcia, Larry Aagesen, John Allison, Laura Bartolo, Jon Guyer, Paul Mason, Anton Van der Ven, Greg Olson, Tershia Pinder-Grover

Issues Raised in Surveys

• Limited availability of faculty in implementation of CMSE components in MSE curricula.
• Practical concerns of reallocation of resources to enable implementation of CMSE into education.
• Employers finding gaps between tools taught and those commonly in use.
• Web-based dissemination of educational materials for CMSE alone may not be optimal.
Issues Raised in Surveys

- Limited availability of faculty
- Reallocation of limited resources ($ for software & equipment, students’ time)
- Employers finding gaps between tools taught & those commonly in use
- Web-based dissemination of materials not sufficient
Issues Raised in Surveys

- Limited availability of faculty
 - Eliminate the need for dedicated computational faculty
 - Will significantly reduce the burden; tutorials, problem set, solutions

- Reallocation of limited resources ($ for software & equipment, students’ time)
 - Balanced selection of topics

- Employers finding gaps between tools taught & those commonly in use
 - Training, in addition to providing materials

- Web-based dissemination of materials not sufficient
Past Summer School for ICMEd

- Thanks to the participants, the materials from the Summer School have impacted hundreds of students!
6th Summer School for ICMEd

- University of Michigan, Ann Arbor, June 5 - 16, 2017
- Application information will be available at http://icmed.engin.umich.edu
- Email icmed2017@umich.edu to get on the email list.
Future Directions: New Survey

• The previous survey was in 2009
 – What’s the state of CMSE education?
 – What do industry use now? Have the needs changed?

• Assessment of Summer School
 – Where are the past participants?
 – What did they utilize?

• New survey will be performed in fall 2017
 – The results will be compiled thereafter and published
 – Please help us if you receive a request!
Thank you for your attention!