Scientific Achievement

We showed diffusion coefficients in fcc Co follow a parabolic trend for solutes across the transition metal series. Here the change in the diffusion coefficient correlates with d-band filling, peaking near half d-filling, and then finally decreasing back down as the d-shell completely fills. We find that large solutes diffuse much faster than small ones due to what we named the **strain-mediated mechanism**. We found for the extremely large solutes (group III), the monovacancy mediated mechanism of diffusion is not valid.
Significance
Beside the scientific understating of diffusion in fcc metals, this research provides valuable information for larger-scale ICME tools: 1) developing CALPHAD type diffusion mobility databases, similar to the ones that exist for Mg alloys and Ni-based superalloys, and 2) constructing predictive, quantitative phase-field models of microstructural evolution.

Citation