

The Latest from Citrine

Summit on Data and Analytics for Materials Research 31 October 2016

Our Mission is Simple

Add as much value to your work as possible, immediately, using data

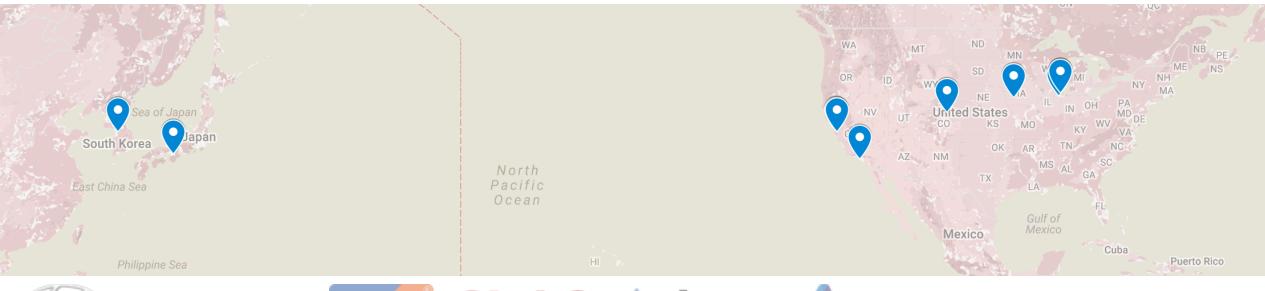
Keys to Industrial Relevance

UBIQUITY

EASE OF USE

OBVIOUS ROI

Citrine Platform: Worldwide Deployments



INNOVATIONS LLC

Several Fortune 500 companies

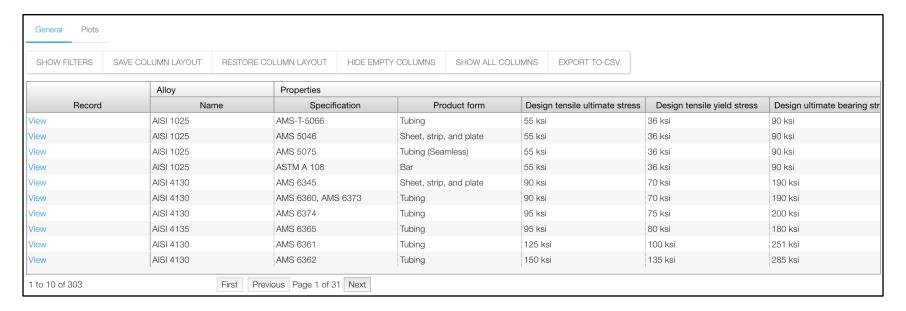
Citrine is the community cloud for materials data, predictive models, & post-processing

- + All relevant data in one place, unified from databases, research groups, papers
- + **Predictive AI**, physics-based simulations, and postprocessing tools seamlessly integrated with the data
- + Vibrant ecosystem of researchers and developers

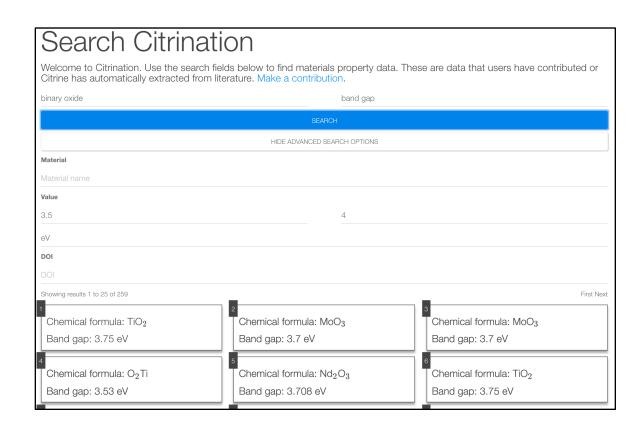
All Relevant Data

17m+ free data records as pif's on citrination.com (& API)

ASM and MMPDS are now official data partners, providing premium data to the platform; 6 free NIST SRD's & much more



Graphical & API (Semantic) Search



"Show me binary oxides with band gap between 3.5 and 4 eV"

Open Data Matters



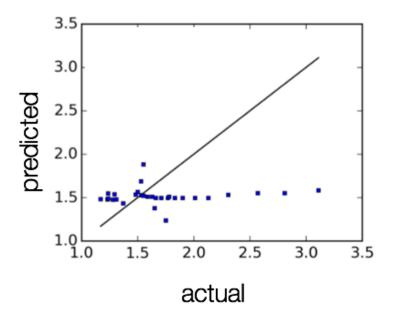
"In the current implementation, SS-AutoPhase (semi-supervised AutoPhase) was used to phase map 278 diffractograms from a FeGaPd "open-data" combinatorial thin-film library.[citation for Citrination]

• • •

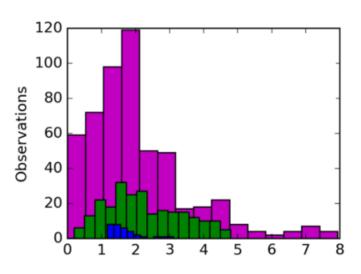
In this study, the open FeGaPd structural data not only allowed for the validation of SS-AutoPhase, but also it enabled a **new materials discovery from data produced >10 years ago**. By making these data open, the value of the data to the materials community was increased."

Value of Data Scale in Practice

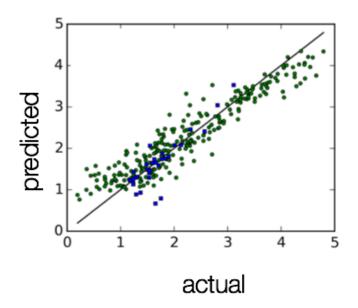
Initial dataset too small \rightarrow Larger training set for signal



via Citrine platform



Predictive model drove real-world discovery



The Citrine Predictive Approach

Start with known physical and chemical relationships (priors = DFT ground states, CALPHAD simulations, design rules...)

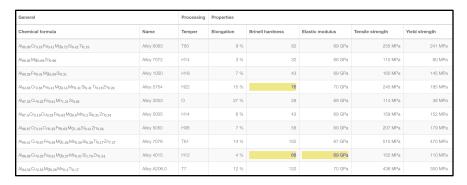
then

fit remaining variance to reality (huge quantities of relevant measurements) with machine learning

Platform Machine Learning Capabilities

Citrine's platform exposes machine learning in 3 ways

Filling in Data Gaps



Predict Interface

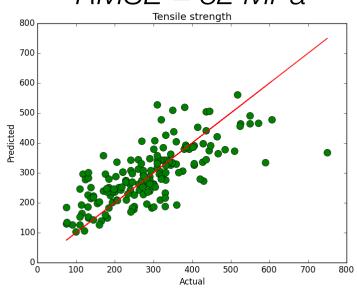
Inverse Design

Predictive Artificial Intelligence for Materials

Collaboration with Computherm to demonstrate benefits of CALPHAD data in training AI to predict AI alloy mech properties

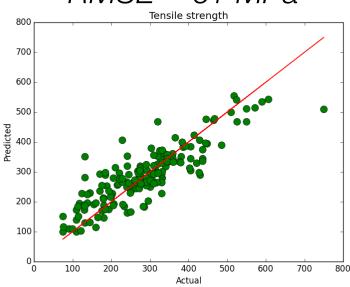
AI without CALPHAD

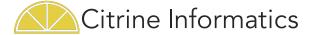
RMSE = 82 MPa



AI with CALPHAD

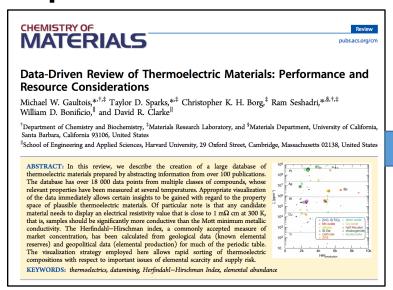
RMSE = 61 MPa



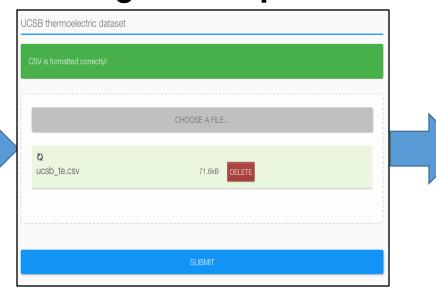


Machine Learning on Demand

Paper with valuable data

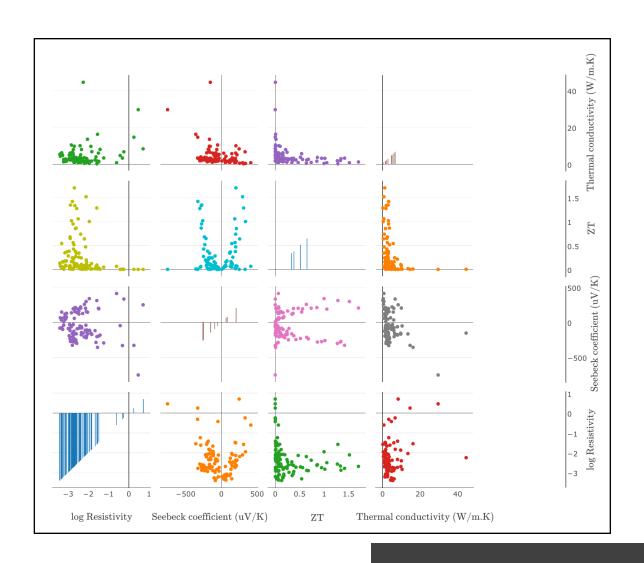


Drag and drop .csv



Interactive models

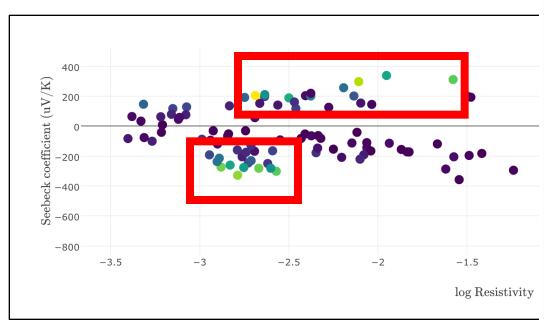
Dataset Visualization



Scatterplot of UCSB thermoelectrics dataset

Gaultois et al., Chem Mater 25 (2013)

Dataset Visualization





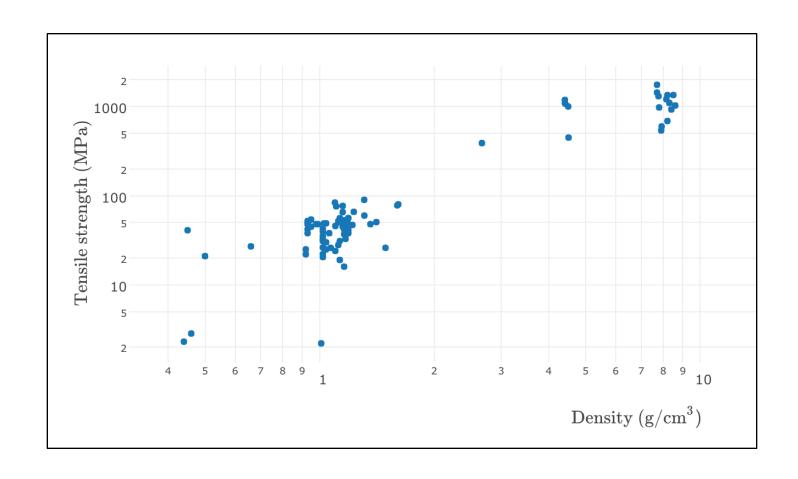
Citrine platform recreates visuals from the paper interactively

Gaultois et al., Chem Mater 25 (2013)

Material families: Mn oxides, Co oxides, ZnO and SrTiO₃, other oxides, chalcogenides, clathrates, skutterudites, half-Heuslers, Zintls, Si and Ge, Silicide

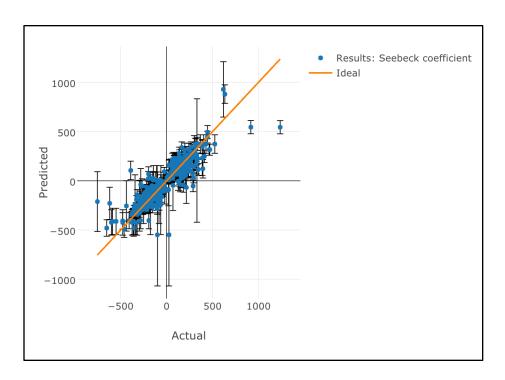
Dataset Visualization

Dynamic Ashby plot of commercial 3D printing materials

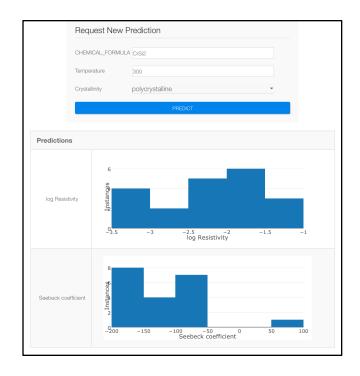


Uncertainty Quantification

All Models Have Error Bars



Predictions are Distributions



Feature Selection & Importance

Magpie feature set

bitbucket.org/wolverton/magpie doi:10.1038/npjcompumats.2016.28

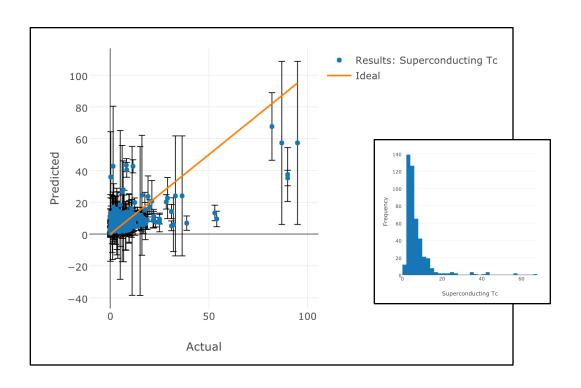
We are working with the informatics community to build a comprehensive library of all published features

mportant Features		
Seebeck coefficient		
CHEMICAL_FORMULA_ElectronAffinity_I1	0.11953138134990215	
CHEMICAL_FORMULA_NsUnfilled_I1	0.10335721226261824	
CHEMICAL_FORMULA_NUnfilled_I1	0.09780109721022519	
CHEMICAL_FORMULA_NsValence_I1	0.08118081419616913	
CHEMICAL_FORMULA_GSestFCClatcnt_l1	0.07888443644268245	
CHEMICAL_FORMULA_ICSDVolume_I1	0.07696848738961315	
CHEMICAL_FORMULA_Row_I1	0.07500187458125034	
CHEMICAL_FORMULA_MiracleRadius_I1	0.06839587008787573	
CHEMICAL_FORMULA_GSestBCClatcnt_I1	0.06776567820725884	
CHEMICAL_FORMULA_BoilingT_I1	0.06771500457780066	
CHEMICAL_FORMULA_GSvolume_pa_I1	0.06425279861122248	
CHEMICAL_FORMULA_ShearModulus_I1	0.06199032157983999	
Temperature	0.03715502350354161	

Model Anything!

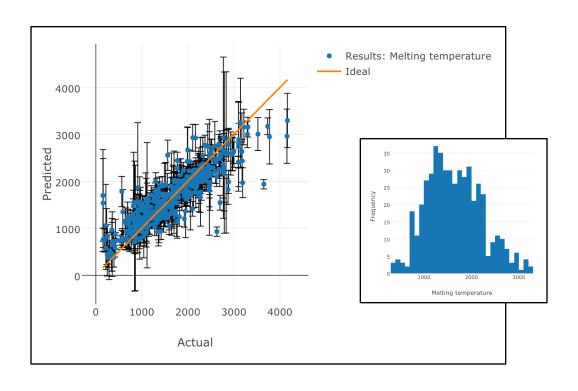
NIMS Superconductor Dataset

(turns out, superconductors = not easy)



NIMS Melting Point Dataset

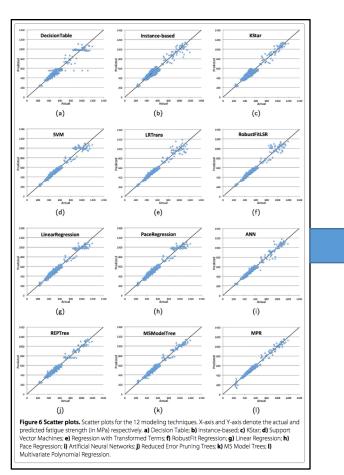
(melting point = much easier)



Model Anything!

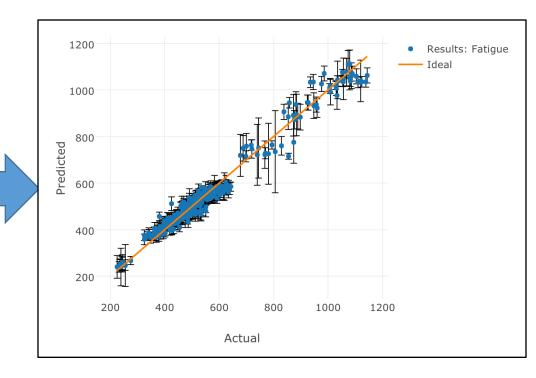
Integrating Materials http://www.immijournal.com/content/3/1/8 and Manufacturing Innovation RESEARCH Exploration of data science techniques to predict fatique strength of steel from composition and processing parameters Ankit Agrawa^{11*}, Parijat D Deshpande², Ahmet Cecen³, Gautham P Basavarsu², Alok N Choudhary¹ and Surya R Kalidindi^{3,4} ankitag@eecs.northwestern.ed

Department of Electrical This paper describes the use of data analytics tools for predicting the fatigue strength Engineering and Computer Science, Northwestern University, Evanston, of steels. Several physics-based as well as data-driven approaches have been used to arrive at correlations between various properties of alloys and their compositions and Full list of author information is manufacturing process parameters. Data-driven approaches are of significant interest to materials engineers especially in arriving at extreme value properties such as cyclic fatigue, where the current state-of-the-art physics based models have severe imitations. Unfortunately, there is limited amount of documented success in these efforts. In this paper, we explore the application of different data science techniques, including feature selection and predictive modeling, to the fatigue properties of steels, utilizing the data from the National Institute for Material Science (NIMS) public domain database, and present a systematic end-to-end framework for exploring materials informatics. Results demonstrate that several advanced data analytics techniques such as neural networks, decision trees, and multivariate polynomial regression can achieve significant improvement in the prediction accuracy over previous efforts, with R2 values over 0.97. The results have successfully demonstrated the utility of such data mining tools for ranking the composition and process parameters in the order of their potential for predicting fatigue strength of steels, and actually develop predictive Keywords: Materials informatics; Data mining; Regression analysis; Processing-property linkages



Citrine platform creates steel fatigue model from published dataset

Agrawal et al., IMMI 3 (2014)

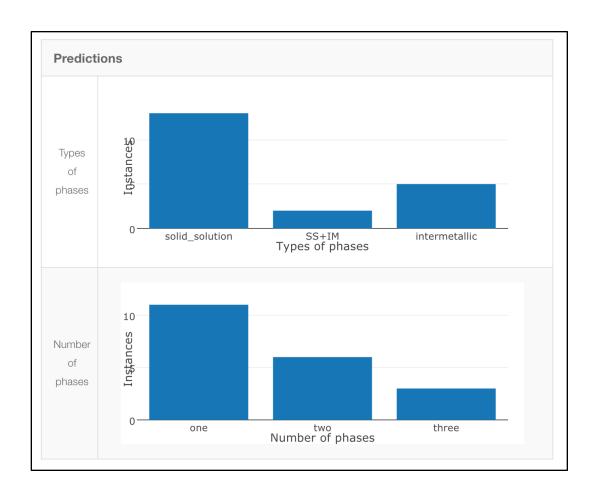


Model Anything!

Citrine platform trained on HEA phase stability database

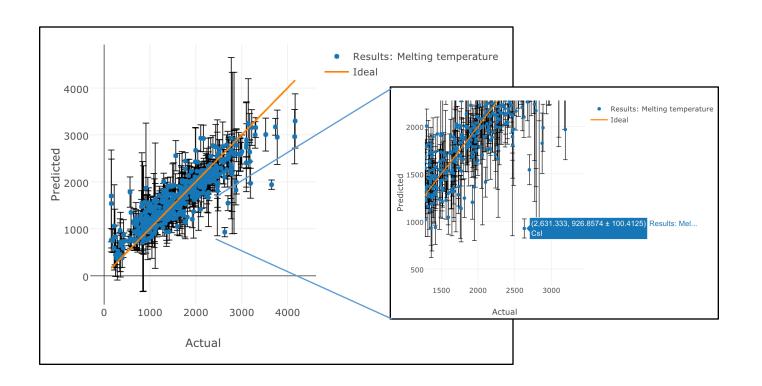
D Miracle & O Senkov, Acta Mater 2016

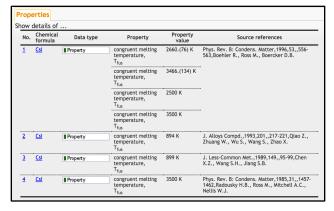
Ex: MoRhRu correctly predicted to be single-phase SS



Machine Learning-Assisted Data Curation

NIMS Melting Point Dataset





Csl

Predicted: 927 K

Training: 2631.333 K

1 atm value: 831 K

Vibrant Ecosystem

Citrine has a new developers' program to enable researchers to publish code that integrates on Citrination

COMBO Bayesian
Optimization Package
K Tsuda, Univ Tokyo / NIMS

Citrine Back to Citrination		
Run About Example Input: File (.csv): Choose File No file chosen	(?)	
Number of candidates:	(?)	Choose a CSV from your computer. The last column is treated as a response. All preceding columns are treated as inputs.
1		
Is ID column present as first column?	(?)	
Run Combo		

"Powered by Citrine" Launch

Anchor set of university labs deploying Citrine lab-wide

We are training these users on our API, dataset templates, machine learning templates, PIF data format, and pdf->dataset extraction tools

Data-Driven Materials Community

Data-Driven Materials Science & Chemistry Newsletter (citrine.io/ddms-newsletter) has >200 weekly readers

"Your new research highlights are great. There's nothing else out there like this for materials informatics ... Particularly when there's a ton of stuff to do in a day, the 1-2 paragraphs plus a figure is a perfect length to start off the day with a hit of research." –a reader

Citrine Business Model

Free platform (data & apps) available to everyone

Users of the free platform allow Citrine's algorithms to learn from their data (*Gmail model=monetizing data, not users*)

Industrial users pay for data privacy, while tapping the insights of the free platform

Some premium platform content (e.g., commercial databases)

Sustainability

Citrine's team of 15+ spends \$mm/year to create a scalable, secure, extensible, supported materials data infrastructure for thousands of users—this is not fast, easy, cheap, or temporary

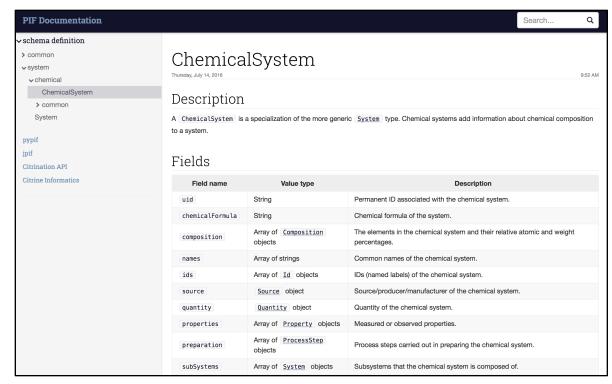
Things we build, track, or have:

- Uptime
- Performance
- Feature velocity
- Security
- Support
- Quality assurance
- Decades of enterprise s/w engineering experience

Citrine Does Not Lock Users In

Our data structure (pif) is completely open-source JSON: you can export all of your data out of Citrine and back it up elsewhere

We want users using us because they love our platform, not because their data are trapped



citrine.io/pif

(also see MRS Bull article on pif)

Let's Create Community Infrastructure

Lots of groups working on roughly the same core web platform features and data plumbing

How can Citrine make it easier for you to build on top of or integrate with our core platform capabilities?

"Let Citrine handle the IT so you can focus on science"