High Performance Computing for Synchrotrons

Alexander Hexemer

Advanced Light Source, Lawrence Berkeley National Laboratory

2 Petabytes/year of raw complex data.

3 years ago

current

2

Data Flow

Tomography Pipeline -ALS Data and Simulation 🖂 👋 🕒 ALS Data and Simulation G A https://portal.nersc.gov/project/als/justin/data_justin.html 👷 » 🔳 Data Browser Welcome dula Logout Prep Sample chilarch als bl832 426 134239 SYN 27_HW0078 aea F 90534 20130524_164610_Chilarch_9053427 _juv_lKl_ Toggle Viewer raw norm sino imgrec gridrec 20130524_173053_Chilarch_9053427 juv IKI 33-5keV img0696_thumb.jpg 20130713_185717_Chilarchaea_quel Semilog Histogram Ion F 9053427 IKI X-ray Image 20130713 185717 chilarchaea quel NERSC Ion F 9053427 IKI et ROI Bounds as % SPOT ROI: Left%,T%,R%,B% Phase Filter 3. Search for data kEV[,] default = [17 000] Dist: Distance (um), [25. by name, date, etc. Pixl sz (µm), [0.441 Δpx: FRAME-Pack Data Beta. [1.0] Store/ δ Delta [1 0] Remove Outliers WORK 4. View 2D AND Rad: Radius 12 01 Threshold, [1000.0 3D data—in the vInit: itial v-coord, [588 Height, [594] browser imple Ring Removal Move Data ESnet 5. Launch jobs Navigatio - + | s S | HiQ on | Steps: 256 | Framerate:60fps on NERSC from Red Simulate Process/ the browser

Data movement and access

From User: Alessandro Sepe <u>as2237@cam.ac.uk</u> -- "Actually, I did not feel any difference between a standard beamtime and this NERSC remotely accessed beamtime, which is quite an extraordinary result"

Dynamic Image Sampling

Reconstructed Image

Original Image (Target)

G. M. Dilshan Godaliyadda, Gregory T. Buzzard, and Charles A. Bouman, ``A Model-Based Framework for Fast Dynamic Image Sampling," {IEEE International Conference on Acoustics Speech and Signal Processing,}

Center for Advanced Mathematics for Energy Research Applications

Jamie Sethian Head of CAMERA DOE: BES and ASCR \$10.5M for 3 years

Include latest theory and math, take advantage of latest architecture: Multi CPU/GPU, open source, everything shared, many collaborations <u>WWW.camera.lbl.gov</u>

Ptychography

GISAXS

Image Analysis

Material Informatics

GISAXS

Scattering pattern gives 3-D statistical information about distribution of embedded nano-structures

Computed GISAXS images for a "fingerprint" Si grating sample at incident angle $\alpha_i = 0.15^{\circ}$

(b) Simulated GISAXS pattern for a rectangular model of the grating cross section with width and height ranges of nm and nm, respectively. (c) Simulated GISAXS pattern (*left*) using a shape with a trapezoidal cross section.

Design Model

0

@•

Simulations can't keep up

- Pre-schedule concurrent time at ALS beamline 7.3.3 and on OLCF's Titan
- Measure time-resolved scattering data of new materials
- Automatically capture metadata and transfer data to NERSC for realtime processing using SPOT Suite
- Dynamically establish a Globus Online connection between NERSC and OLCF to transfer data to and from Titan
- Automatically trigger large-scale (8,000 node) HipGISAXS computation to simulate and fit the structure to the experimental data using particle swarm optimization
- Present GISAXS fitted results and provenance through CADES and SPOT Suite.
- Display results through the web portal back to the scientists at the beamline

Xi-cam: Modular Interface for Analysis

Scientific Achievement

Development of a community-maintainable platform for new analysis and visualization techniques for a variety of techniques.

Significance and Impact

New visualization techniques extract further information from synchrotron data. Open source modular design allows collaborative development and resource consolidation across synchrotron facilities.

Research Details

- Remote processing with HPC for real-time high data rate analysis
- NERSC/SPOT remote data access for high-volume data archive retrieval (Using Globes)
- Highly interactive responsive design improves user control and accessibility

Work supported by the Early Career Award program, DOE.

^{* &}lt;u>Pandolfi, R., Venkatakrishnan, Kumar, D., Hexemer, A.</u> (*under preparation*)

The project is in collaboration between CAMERA, APS, SSRL, CFN and NSLS II.

The High-throughput NEXAFS workflow

ANALYSIS: Machine LEARNING for X-ray Data

Can we classify crystal lattice from GISAXS patterns ?

Convolutional Neural Network (CNN) - "Deep Learning" for GISAXS Image Classification*

Preprocessing: Subtract mean of training data from all inputs **Method**: Stochastic Gradient Descent with momentum

Classification Results*

Method	Accuracy: Original Data Set	Accuracy: Noisy Data
Convolutional Neural Networks (Proposed)	92.3%	91.6%
Histogram of Oriented Gradients (Conventiona	92%	80%

Deep-Learning Technique: Robustness to noise

Acknowledgements

S.Venkat akrishnan D. Kumar

Technische Universität München

