Data and Analytics for Materials Research

Sustainability, Public/Private Partnerships, and Industry Needs and Interests

David Furrer and Rajiv Naik

October 31, 2016

2016 Data & Analytics for Materials Research Summit Oct 31 - Wednesday Nov 2, 2016 Northwestern University, Evanston, IL

Trademarks used herein are the property of their respective owners This document has been publicly released ©2016 Uni

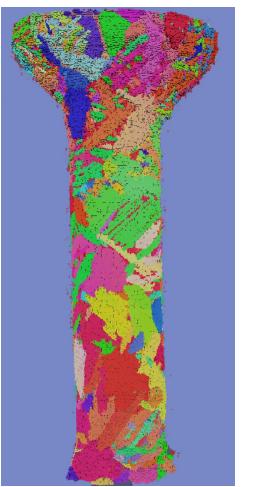
©2016 United Technologies Corporation

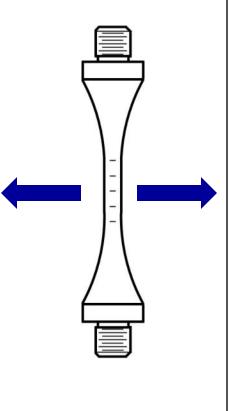
OUTLINE

- Industry Needs and Interests
- Public/Private Partnerships
- Sustainability
- Summary

2

Industry Requirements for Data & Analytics


- Material Definitions
- Model Development
- Material Pedigrees based on Processing


3

MATERIALS DEFINITIONS

What a tensile test looks like.....

MIL-HBK-5H

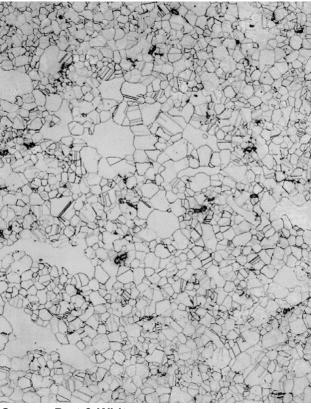
Table 5.4.1.0(b). Desig Plate	n Mea	hanio	aland	Physic	al Prope	erties of Ti	-6AI-4V S	Sheet, St	rip, and
Specification	AMS 4911 and MIL-T-9046, Comp. AB-1					MIL-T-9046, Comp. AB-1			
Form	Sheet P1					Sheet, strip, and plate			
Condition	Annealed				Solution treated and aged				
Thickness, in.	≤ 0.1875		0.1875-2.000		2.001- 4.000	≤ 0.18 75	0.1875- 0.750	0.751- 1.000	1.001- 2.000
Basis	Α	В	Α	В	S	S	S	S	S
Mechanical Properties: F _{av} , ksi:									
L LT	134 134	139 139	130ª 130ª	135 138	130 130	160 160	160 160	150 150	145 145
<i>F</i> ₀ , ksi: L	126	131	120	125	120	145	145	140	135
LT F_{q_2} , ksi:	126	131	120ª	131	120	145	145	140	135
L LT	133 135	138 141	124 130	129 142	124 130	154 162	150	145	
F_{su} , ksi F_{bno} , ksi:	87	90	79	84	79	102	93	87	
(e/D = 1.5) (e/D = 2.0)	213 ^b 272 ^b	221 ^b 283 ^b	206 ^b 260 ^b	214 ^b 276 ^b	206 ^b 260 ^b	236 286	248 308	233 289	
F_{bry} , ksi: (e/D = 1.5) (e/D = 2.0)	171 ^b 208 ^b	178 ^b 217 ^b	164 ^b 194 ^b	179 ^b 212 ^b	164 ^b 194 ^b	210 232	210 243	203 235	
e, percent (S-basis): L.LT.	8° 8°		10 10		10 10	5ª 5ª	8	6	6
E_{c} 10 ³ ksi E_{c} 10 ³ ksi G, 10 ³ ksi	16.0 16.4 6.2								
μ					0	0.31			
Physical Properties: ω, 1b/in. ³ C, K, and α	0.160 See Figure 4.5.1.0								

Bearing values are "dry pin" values per Section 1.4.7.1. -0.025 to 0.062 in. and 10%-0.063 in. and above.

in. and above; 4%-0.033 to 0.049 in. and 3%-0.032 in. and below

Source: Rollie Dutton - AFRL

To a Materials Engineer


To a Mechanical Engineer

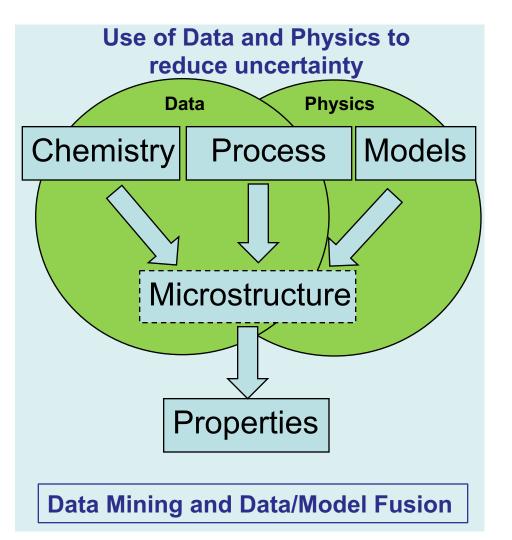
This document has been publicly released

MATERIALS DEFINITIONS

Advanced characterization enabling modern definitions

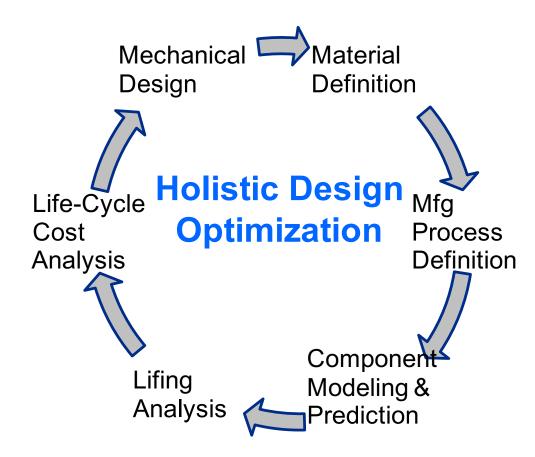
Source: Prat & Whitney

Source: Pratt & Whitney


Optical and OIM Images of Partially Recrystallized Waspaloy

This document has been publicly released

MATERIALS INFORMATICS


Use of data and modeling

- Capture and Re-Use Materials Data and Meta-Data ("Digital Thread")
- Establish Enhanced Models to Support Future Materials Definitions and Design Functions
- Quantify Uncertainty of Models and Enhance Understanding to Minimize Future Testing

COMPUTATIONAL MATERIALS MODELING

Fit for purpose focus

Materials Modeling:

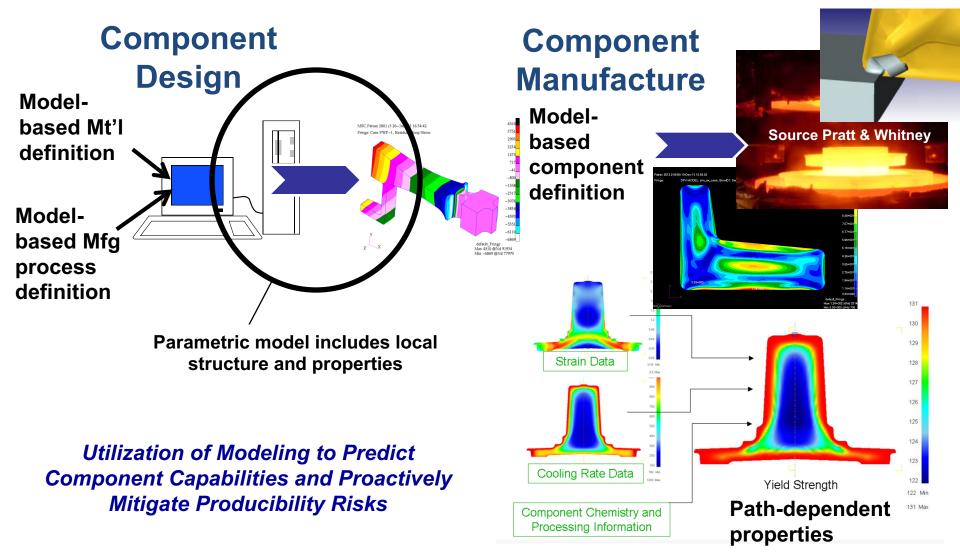
Enhanced material definition Mechanism-based understanding Path-dependent predictions

Mfg Process Modeling:

Material processing path definition

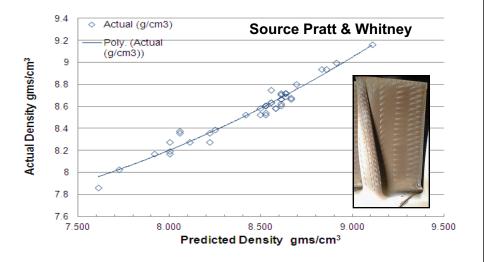
Component Modeling:

Location-specific optimization


Integrated Computational Materials Engineering (ICME)

7

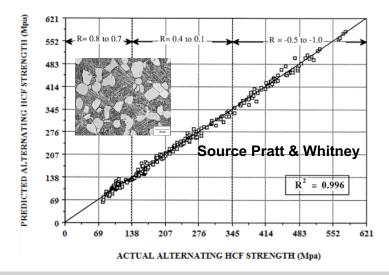
MODEL-BASED DEFINITIONS



Use models to link design, producibility & properties

COMPUTATIONAL MATERIALS MODELING

Single Crystal Alloy Design Optimization



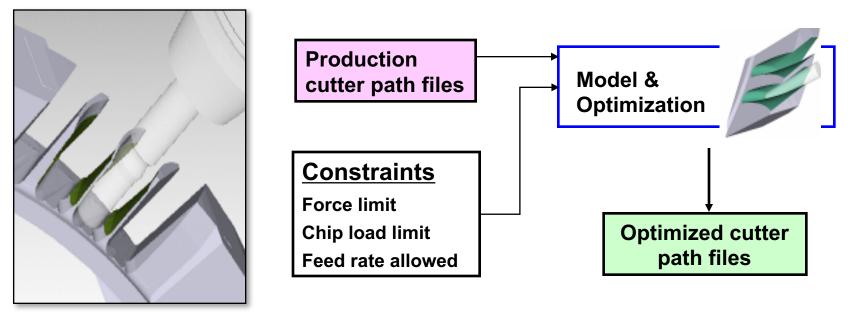
Computational model-based alloy design

Reduce rare earth elements

Rhenium-free alloy developed in < 2yrs

Microstructure sensitive materials behavior modeling

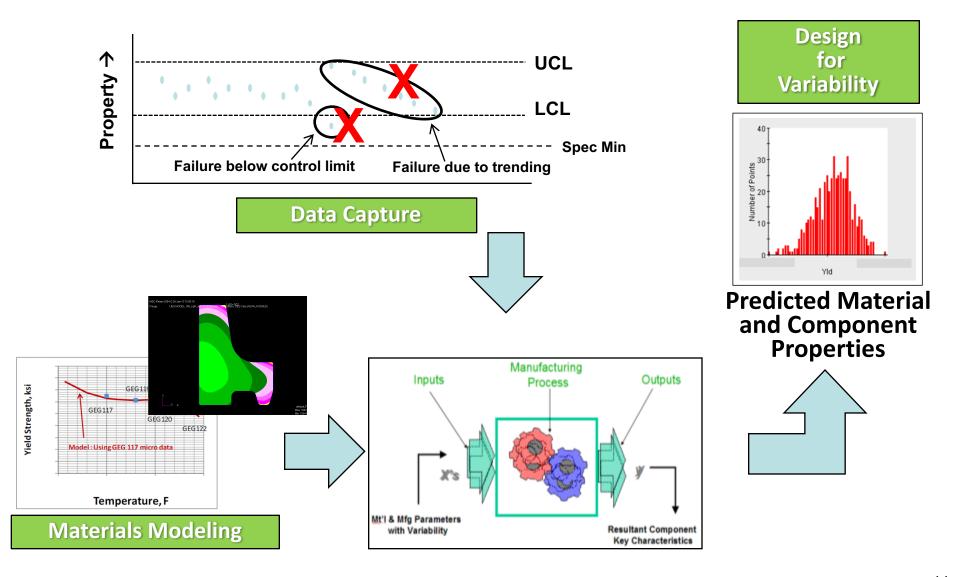
Advanced rotor alloys to enable higher temperature cycles


Chemistry and microstructurebased fatigue models

Location-specific component mechanical property predictions

COMPUTATIONAL PROCESS MODELING

Physics-based models can drive optimization

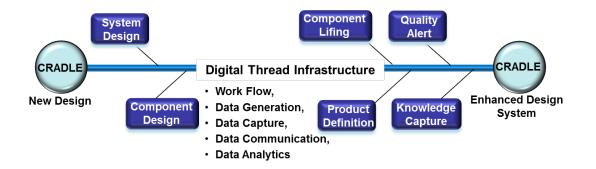


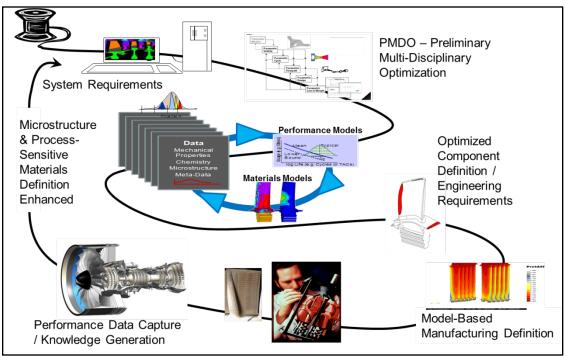
Source Pratt & Whitney

Machining process optimization reduces cycle time and increases cutter survival rate

CRITICAL INFRASTRUCTURE ELEMENTS

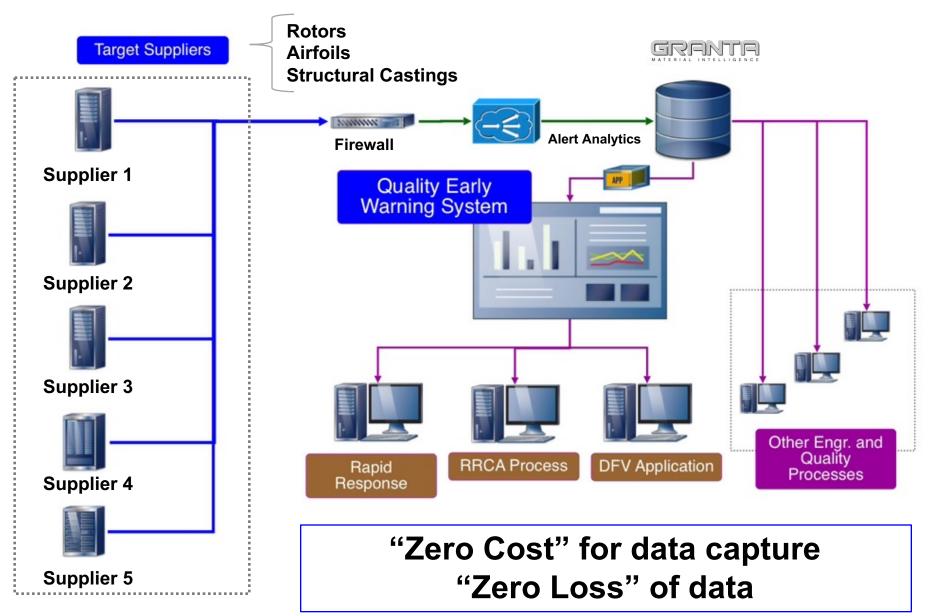
Goal is prediction and control of capabilities


This document has been publicly released


DIGITAL THREAD INFRASTRUCTURE

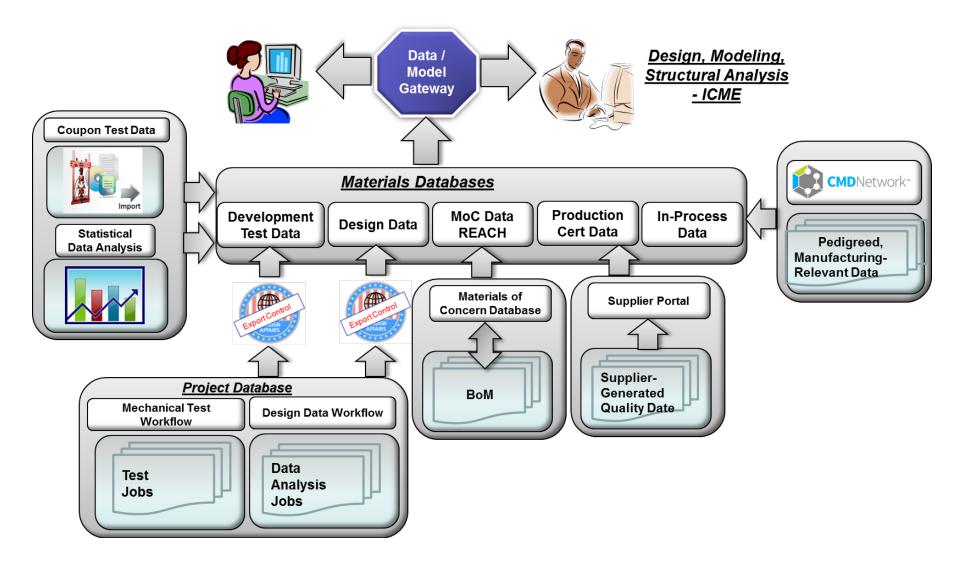
Benefits

- Performance-based design capabilities
- Real-time analytics for improved decision-making
- Enhanced sustainment and usage-based component lifing
- Proactive and adaptive correction of production issues



Source Pratt & Whitney

MATERIALS DATA CAPTURE


This document has been publicly released

13

MATERIALS DATA INFRASTRUCTURE

Data comes from many sources

Education

- □ Linkages between engineering disciplines
- □ Identification of pre-competitive technology
- Incentives for organizations to collaboratively fill gaps in needed technology capabilities
- Standards for data, communication, computational linkages

EFFECTIVE COLLABORATION APPROACHES

- □ Focused research
- □ Clear and accessible benefits
- □ Win-Win approach for research and results
- □ Favorable funding framework

Professional societies are actively supporting collaboration and integration of inter-disciplinary research and technology

- ASM-International: Programming; Materials Data Management
- TMS: Programming; Education; Computational Tools Repository
- □ AIAA: Programming; Education

Others.....

PROFESSIONAL SOCIETIES

ASM-International

http://www.asminternational.org/web/cmdnetwork

This document has been publicly released

PROFESSIONAL SOCIETIES

TMS

The Orlando Materials Innovation Principles

TMS is leading collaboration efforts to establish common framework for sharing and publishing

http://www.tms.org/orlandoprinciples/

The Material Data Management Consortium (MDMC)

Managing critical data in aerospace, defense, and energy

http://www.mdmc.net/

Materials Data Management Consortium (MDMC)

Granta-Ltd Led Industrial Sponsored Consortium

UNIVERSITY / INDUSTRY CONSORTIA

METAL PROCESSING INSTITUTE Centers for Focused Pre-Competitive Research

ACRC Advanced Casting Research Center

CHTE Center for Heat Treating Excellence

> R³ Center for Resource Recovery and Recycling

CMPD Center for Materials Processing Data

http://wp.wpi.edu/mpi/

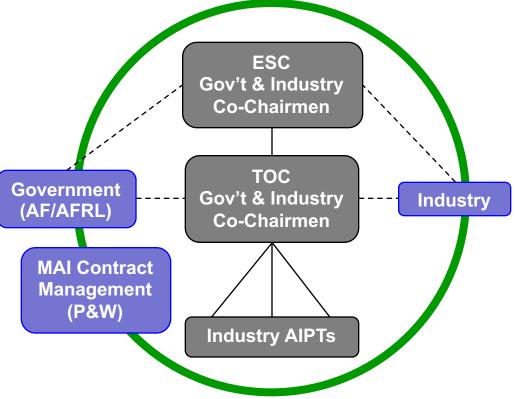
CAPD CENTER FOR MATERIALS PROCESSING DATA

Clean, pedigreed data for manufacturing process simulation

UNIVERSITY / INDUSTRY CONSORTIA

Gain access to all needed transient materials property relevant to manufacturing in one location....

Collaborate on and develop trusted, highly pedigreed data.....


http://wp.wpi.edu/cmpd/

GOVERNMENT / INDUSTRY COLLABORATIONS

Consortia and Centers that have been long-running are a result of being successful at delivery of Win-Win solutions

Metals Affordability Initiative (MAI) is an example of a successful Government and Industry Consortium

Many successful projects have resulted from this collaborative program

Clear, Tangible Benefits WIN - WIN

- Data and data analytics are critical for materials research and application
- Model-based material and process definitions are emerging
- Data is required for optimal application of models
- Collaboration on pre-competitive data and technology critical for speed of new development
- Sustainment will result from clear benefits and WIN-WIN strategies