SOFT MATERIALS AT THE CENTER FOR HIERARCHICAL MATERIALS DESIGN

Juan de Pablo, University of Chicago October 31, 2016

- Weak interactions, order $k_B T$
- Always evolving, often far from equilibrium
- Often amorphous, difficult to "define"
- One compound can behave very differently
 - linear polyethylene
 - branched polyethylene
- Complicated theoretical descriptions, hard to solve
- Lack of data
- ..

HARD VS. SOFT MATTER

SOFT MATERIALS AT CHiMaD

CALPHAD Method – Metallic Alloys

$$G = G_{id}^{\phi} + G_E^{\phi}$$

$$G_{id}^{\phi} = \mathbf{R} \cdot \mathbf{T} \cdot \sum_{i=1}^{n} x_i \cdot \ln(x_i), \quad i = 1, \dots, n$$

$$G_{E}^{\phi} = \sum_{\substack{i,j=1\\i\neq j}}^{n} x_{i}x_{j} \sum_{z=0}^{m} {}^{z}L(x_{i} - x_{j})^{z} + \sum_{\substack{i,j,k=1\\i\neq j\neq k}}^{n} x_{i}x_{j}x_{k}L_{ijk} \quad z = 0, \dots, m$$

CHMaD

"Modelling of phase diagrams and thermodynamic properties using Calphad method – Development of thermodynamic databases" A. Kroupa, Computational Materials Science, 66, 3–13 (2013)

A Universal Platform

OPV Polymers and Liquid Crystallinity - Model

Intra-molecular Interactions: Worm-like chain model

NanoMine

Catherine Brinson, NU

Wei Chen, NU processing, structure and property parameters for polymer nanocomposite systems

Polymer Design

Juan de Pablo, UChicago

lan Foster, UChicago

Paul Nealey, UChicago

Heinrich Jaeger, UChicago characteristic properties for design of polymer blends and copolymers for engineering applications

NanoMine: Polymer Nanocomposite Data Curation Welcome, admin1. Thanks for logging in.					Da	taBas	е
Home Data Curation Data B	Exploration Composer						
Select Template Enter Data View	v Data				- All	A A	
Data Curation	Select Templ						
Select Template	Select a template from the follo	selection, click on "Enter Data" to			1. 1		
2 Enter Data	proceed. It will automatically lo	Global Templates	lay it on the next page.			2	
3 View Data	Template name	File name	Actions				
	HDF5-File	HDF5-File.xsd	Data Entrv				
	Polymer Nanocomposites	PNC_all.xsd					
	demoDiffusionData_v2.0	demoDiffusionData_v2.0.xsd	Here you can fill in the Material entered.	Data form. Once it is	s completed, you	can view the data	you have
 Data curation: literature and lab, automation, smart query tools, visualization tools 			 PolymerNanocomposite ID DATA_SOURCE ③ MATERIALS ④ Polymer ③ ④ PolymerName ChemicalCompositio ManufacturerName TradeName TradeName MolecularWeight ③ description MolecularWeight value JO 	Clear fields	Ei Claen,	Save form	↓ Download

1

PPDB: Method (1)

• Automated knowledge extraction from text, equations, tables and figures.

PPDB: Method (2)

• Leverage knowledge from crowd-sourced *experts* to aid classification and knowledge extraction.

Form to enter	chi: Add Chi value					
Table:	4 🛟					
Figure:	7 🛟					
Compound A:	PCHE					
Compound B:	PMMA					
Mol. mass A:	28					
Mol. mass B:	28					
Method:	Maro-phase separation in binary polymer blend 🜲					
Type:	Type 2 🌲					
Value:						
Error (+/-):						
Temp.:	150					
Temp. unit:	C					
A:	144					
B:	-0.62					
C:						
Reference:	Kennegur, Justin G., et al. "Sub-5 nm Domains in Ordered Poly (<u>syclohesylethylene</u>)-block-poly					
Notes:	poly(<u>cyclohexylethylene</u>)-block- poly(methyl <u>methacrylate</u>)					
Save						

Roselyne Tchoua (CI), Debbie Audus (NIST), Jian Qin (IME), Mladen Rasic(IME)

PPDB: Method (3)

 Create a curated database for a range of polymer properties & present molecular engineers with *approved* relevant data for materials design. Port to other materials/properties.

Available Tools

- All applications on the site now run natively on mobile devices.
- Interactive Output from the database, obtain chi value, system details, method, and source of chi value.
- Interactive phase diagrams, free energy plots, data points, etc.

> C ff D pppdb.uchicago.edu/lioryplot Materials Genome Project About	🕸 🕐 🗔 🧟 🖗 🔀 🔯 M							
Results								
From the Database	pppdb.uchicago.edu							
Chi Value between Polystyrene and	Marrial Grown Paget and Results							
$\chi = -0.07 + \frac{63}{T}$	From the Database Details Compared A flags of the second seco							
SOURCE	Constant Plots							
Input Parameters Monomers of Species A Monomers of Species 100								
Generate F	Main Providence Non- Providence							

Input screen for generation of Lattice Cluster Theory phase diagram with semiflexibility.

Paul Nealey, **UChicago**

Juan de Pablo, UChicago

Steven Sibener, UChicago

Luping Yu, **UChicago**

UChicago

Heinrich Jaeger, lan Foster, **UChicago**

DIRECTED SELF-ASSEMBLY OF BLOCK COPOLYMERS

to revolutionize nanomanufacturing. the interest and exponential growth in research activity and expenditure is driven by the semiconductor industry.

Intel, Mentor Graphics, Global Foundries, IMEC

Directed self-assembly of block copolymers on lithographically defined nanopatterned substrates

Directed assembly of essential features for the fabrication of integrated circuits as defined by representatives from the microelectronics industry

History

Methods Attributes of DSA

Case Studies

USE-CASE GROUP

P. NEALEY, UCHICAGO

DIRECTED SELF-ASSEMBLY OF BLOCK COPOLYMERS

DESIGN GOALS

- Materials and processes for sub 10 nm lithography
- Scaling to 5 nm resolution

- Enable widespread use of DSA nanotechnology.
- Need to establish proven manufacturing-relevant materials and processes to realize sub 10 nm resolution, and scaling to 5 nm.
- Standard metrology cannot be used to develop and validate predictive models or prototypical systems.
- Objective: develop fully 3D metrology tools of DSA structures based on RSoXS
- Experiments are performed on samples fabricated by industrial partners
- Results are quantitatively compared with those of molecular simulations
- Intimate coupling with advances in models, materials design, and processing.

CH MaD

GISAXS and **CDSAXS**

Traditional Interpretation

Candidate morphologies constructed from simple geometric shapes

- Treated as a geometric problem
- Average shape described as combinations of simple patterns

Sunday et al., ACS Nano, 2014

Scattering from Simulations

Directed Self-Assembly on Chemical Patterns

• 3X density multiplication of block copolymer of periodicity 28 nm

Types of Chemical Patterns

Two Toned: xPS is totally preferential to PS

Three-Toned: Top of xPS is preferential to PS while side walls are PMMA preferential

Optimization Results

Optimization Results

- $W/L0 \sim 0.93$
- Approximately 1.5 nm height difference between xPS and backfill brush

Difference in χN between top of xPS and sidewalls suggests three-toned pattern

Three-Toned: Top of xPS is preferential to PS while side walls are PMMA preferential

Morphology for Different Stripe Widths

CDSAXS, TEM & GISAXS W=1.14L_o

Juan de Pablo, UChicago

Monica Olvera de la Cruz, NU

Erik Luijten, NU

CHARGE DRIVEN ASSEMBLY OF SOFT MATTER

to develop new materials based on multi-valent ionic interactions. This direction is significant because it can yield new types of self-assembled structures. knowledge of the as-yet unexplored phase behavior of polyelectrolyte complexes is scientifically significant and technologically relevant.

Solvay, Mars, Dupont --- Startup

CHMaD

Coarse-grained MD for Coacervate

- molecular dynamics
- bead-spring chain
- soft repulsion (TICG)
- soft Coulomb short range
- **Ewald Sum long range**
- constant dielectric permittivity
- salt beads

Self Assembly

- PAA & PDMAEMA 1 : 1 ratio, concentration 0.11M
- Length unit $R_{ee} = 10.2nm$,
- 50 beads per chain,
- 71.6 polymer beads per R_{ee}^3
- · Coulomb strength parameter
 - Bjerrum length $\lambda_B = \frac{e^2}{\epsilon_r k_B T} =$

 $0.7nm = 0.09R_{ee}$

• Runs on GPU with HOOMD

E. Spruijt, A. H. Westphal, J. W. Borst, M. A. Cohen Stuart, J. van der Gucht, Macromol., 2010.

E. Spruijt, A. H. Westphal, J. W. Borst, M. A. Cohen Stuart, J. van der Gucht, Macromol., 2010.

E. Spruijt, A. H. Westphal, J. W. Borst, M. A. Cohen Stuart, J. van der Gucht, *Macromol.*, 2010.

Rheology

E. Spruijt, M. A. Cohen Stuart, J. van der Gucht, Macromol., 2013.

Coarse-grained TICG for charged copolymers

PAGE-PEO diblocks/PAGE-PEO-PAGE triblocks

van der Kooij et al., J. Langmuir 48 (2012); Hunt et al., J. Adv. Mater. 43 (2011);

USE-CASE GROUP

Materials Driven by Charge Complexation

DESIGN GOALS

- © Control hydrogel bulk structure by varying lengths of molecular constituents and polymer loading
- Tune hydrogel sensitivity to salt and pH by varying block lengths
- © Combination of salt, pH and macromolecular structure gives tissue-matching tunable moduli
- © Extension to polypeptide materials with desired biocompatibility and biodegradability envisioned

- Electrostatically cross-linked hydrogels obtained from mixing aqueous solutions of A⁺BA⁺ and C⁻BC⁻ triblock copolymers.
- Polyelectrolyte complex (PEC) domains serve as tunable cross-links. Micelles are the artificial "atoms" in these selfassembled structures
- The ratio of charged:neutral block size determines
 - Size of the PEC domains
 - Aggregation number
- Polymer loading dictates the PEC domain arrangements.
- Combining block size ratio and polymer loading variations allow for tunable mechanical properties

End-to-end distribution

CHMaD

- Directed assembly of multiblock copolymers
- Complex coacervation
- Liquid crystalline polymers OPV materials
- Polymer nanocomposites

Towards a universal platform that enables data analysis, data base population, and rational materials design

Education & Outreach

- Industrial partnerships
 - Intel, Mentor Graphics, Global Foundries
 - Dupont, DOW Corning, Good Year
 - Solvay, Polyera, Mars
- SPIE DSA Course
- Museum of Science and Industry
- Chicago Collegiate Scholars Program

CHMaD

Impact Adsorption and Dissipation

Sid Nagel, UChicago

Heinrich Jaeger, UChicago

Juan de Pablo, UChicago

- Aaron Forster (NIST)
- Chelsea Davis (NIST)
- Chris Soles (NIST)
- Michael Riley (NIST)

International Workshop on Impact Mitigation

August 8, 2016, U. Chicago

Dense suspensions 'by design' for effective impact energy dissipation

Problem: Want material that conforms to arbitrary and possibly evolving surfaces and can dissipate large amounts of impact energy

Proposed solution: Dense suspensions of hard particles in liquid

- liquid-like and highly conforming at low applied stress
- dynamically (& reversibly) transform to solid-like state at large applied stress

Chicago discovery (Nature 487, 2012): Impact-induced dynamic jamming fronts propagate into the suspension, generating a growing solid mass that takes up the impact momentum

Next steps: impact response by design

Dense suspensions 'by design' for effective impact energy dissipation

Key idea: tailor B/G ratio in solid-like state to optimize energy dissipation

Two-pronged approach:

Dense suspension coupled to cellular network with tuned B/G
→ Control over wide range of responses Dense suspension with added designer particles → Optimized dynamic range of response

40

50

Systematic Coarse-Graining

Relative entropy

$$S_{\text{rel}} = \sum_{\nu} p_{\text{AA}}(\nu) \ln \left(\frac{p_{\text{AA}}(\nu)}{p_{\text{CG}}(M[\nu])} \right) + S_{\text{map}}$$

$$S_{\rm rel} = \beta \langle U_{\rm CG} - U_{\rm AA} \rangle_{\rm AA} - \beta (A_{\rm CG} - A_{\rm AA}) + S_{\rm map}$$

CH MaD

Faller et al., 2009, 2015 Carmichael & Shell, JPCB, 2012 Hinckley & de Pablo, JCTC, 2015

Rely on *Effective* Models

"Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away."

Antoine de Saint-Exupery, Vol de Nuit, 1900-1944

Catherine Brinson, NU

Wei Chen, NU

NanoMine: Polymer Nanocomposite Data Curation

lelcome, admin1. Thanks for logging in.

Logout | My Profile | Help

Home Data Curation Data Exploration

Sinan Keten, NU

UChicago

Erik Luijten, NU

POLYMER MATRIX COMPOSITES

to develop a "materials informatics initiative" including integrated databases, curation, visualization, and analysis tools to relate macroscale polymer composite behavior to chemical constituent and kinetic behavior, and linking these resources to further development of high-performance modeling and predictive tools

Owens Corning, Good Year

CHMaD

POLYMER MATRIX COMPOSITES

DESIGN GOALS

- Short term: Cellulose-polymer nanocomposites with optimized interphase behavior for high modulus/diffusion resistance
- Short term: DBs/Models/tools to predict interphase properties and diffusion/modulus of the system
- Song term: develop databases, models and tools to enable prediction of hierarchical com- posite behavior based on constituent components and processing

The database system "NanoMine" was created for polymer nanocomposite material systems, including:

- Curated data from literature in an open source, searchable database, based on Materials Data Curator developed at NIST
- Statistical/machine learning-based methods and tools, eg for identifying the key microstructure descriptors
- Material property simulators for prediction of macroscopic properties using data from DB, predicted microstructures
 Additional tools and resources being developed. Interphase data and predictions being added based on molecular modeling efforts and local characterization experiments in Use Case.

Mechanoresponsive Damage Sensing

Gilman, Phelan, Woodcock, Wang, Davis, Khare

UChicago

Juan de Pablo, UChicago

Giulia Galli, UChicago

Tobin Marks, NU

ORGANIC BULK HETEROJUNCTION POLYMER SOLAR CELLS

bulk heterojunction organic solar cells (OSCs) represent an alternative solar energy harvesting system. New polymers and theoretical methods developed will deepen our understanding in structure/property relationship and push the performance of OSCs towards commercial applications.

Polyera

ORGANIC BULK HETEROJUNCTION POLYMER SOLAR CELLS

DESIGN GOALS

- 1. Develop OPV solar cells with high efficiency, low cost and long term stability.
- 2. Establish structure/property relationship via synthesis, physical characterization, theoretical investigation and device engineering to guide further explorations of new and more efficient materials.

PTB7-Th:PID2:PCBM Ternary OPV System

L. Lu, et al., Nat. Commun., in press.

Insert

- New polymers with varied band gaps were synthesized either as electron donor or acceptors.
- Ternary OPV solar cells were developed that exhibit high efficiency and large enhancement.
- New methods are being developed to modify the the generic molecular dynamics force field method to fully describe the aromatic semiconducting polymers.
- Electronic properties of these polymers are modelled based on sophisticated quantum mechanical calculation.
- Collaborations with NIST scientists are ongoing via sample exchanges and teleconferences.

Ternary OSC with PTB7-Th and Two acceptors

Inverted device architecture: ITO/ZnO/PTB7-Th:TPBDT:PC₇₁BM/MoO₃/Ag

Active layer	V _{oc} , (V)	J _{sc} , (mA/cm²)	FF, (%)	PCE, (%)	Highest PCE, (%)
PTB7-Th:PC7 ₁ BM (1:1.5)	0.77±0.01	18.1±0.1	67.9±0.7	9.5±0.1	9.8
PTB7-Th:TPBDT:PC7 ₁ BM (1:0.05:1.5)	0.77±0.01	18.7±0.2	67.2±0.2	9.8±0.1	10.2
PTB7-Th:TPBDT:PC7 ₁ BM (1:0.1:1.5)	0.76±0.01	19.4±0.2	68.3±0.8	10.1±0.1	10.3
PTB7-Th:TPBDT:PC7 ₁ BM (1:0.2:1.5)	0.77±0.01	19.6±0.4	67.7±0.2	10.1±0.2	10.5

Calculated with Widom insertion method $\frac{(\mu - \mu_0)}{k_B T} = -\ln \langle exp(-\Delta E_t)/k_B T \rangle_{NVT}$