Materials Registry Working Group Meeting

Chandler Becker and Ray Plante

Sharief Youssef, Alden Dima, Zachary Trautt, Kimberly Tryka, Robert Hanisch, Jim Warren, Mary Brady National Institute of Standards and Technology

> Laura Bartolo Northwestern Univ.

RDA Plenary, 15 Sept 2016

Current WG members (9/13/16)

Say a few words about your project.

- Brian Matthews
 - Science and Technology Facilities Council
- Chandler Becker
 - National Institute of Standards and Technology
- Clare Paul
 - Air Force Research Laboratory
- Deborah Mies
 - Granta Design, Ltd.
- Haiqing Yin
 - Beijing Univ. of Science and Tech.
- James Warren
 - National Institute of Standards and Technology
- Kathleen Fontaine
 - Rochester Polytechnic Institute (RDA)
- Laura Bartolo
 - Northwestern Univ.

- Raphael Ritz
 - Max Planck Society, Garching
- Raymond Plante
 - National Institute of Standards and Technology
- Robert Hanisch
 - National Institute of Standards and Technology
- Sharief Youssef
 - National Institute of Standards and Technology
- Tobias Weigel
 - German Climate Computing Center (DKRZ)
- Vasily Bunakov
 - Science and Technology Facilities
 Council
- Zachary Trautt
 - National Institute of Standards and Technology

Overview

- Motivation for WG and related efforts
- Summary of timeline from case statement
- Proposed activities and topics to address in WG
- NIST pilot effort
- Thoughts on how to proceed, followed by discussion

Motivation for the working group

 Many materials resources exist (datasets, websites, repositories, registries, etc.), and the number is growing.

 How can we link them in a way that makes it easier to find and share relevant information and data?

Start by creating catalogs of resources

Hosted in many different locations with diverse content

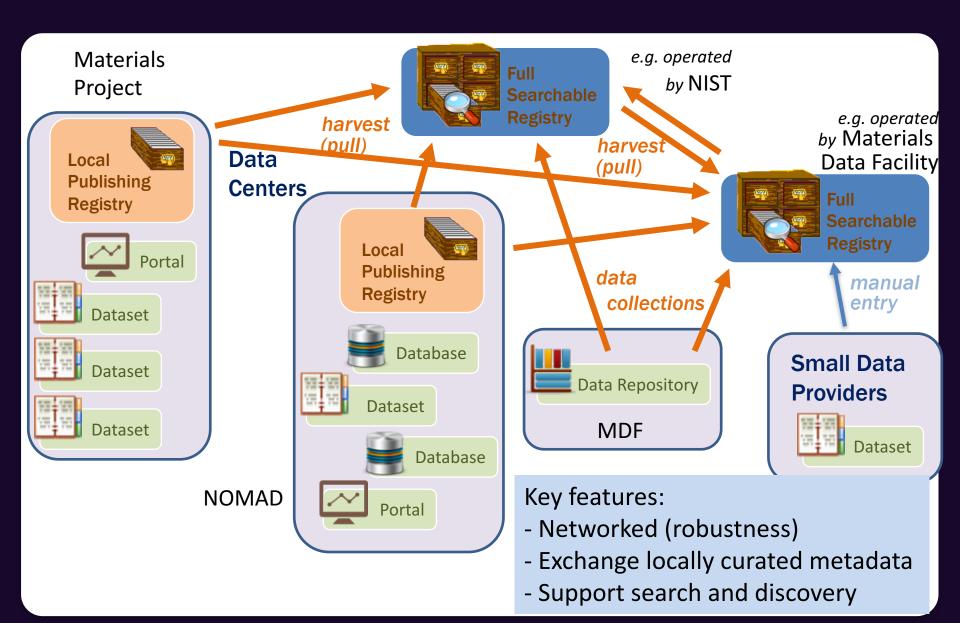
Then connect them

Via data- and information-sharing protocols

What is a registry?

- Registry is a catalog containing descriptions of resources* that are useful for (materials science) data-driven research
 - Mainly datasets, databases, and data services
 - Can also be portals, software, organizations, ...
- A starting point for discovering useful data and tools
 - By making the metadata descriptions searchable
 - Can direct users to the web sites that host the data

Connected catalogs



Turn into...

Building a Registry Federation

- What does federation mean?
 - Comprised of a network of registries; there is no single Registry
 Any registry can collect a globally-comprehensive collection of resource descriptions and make it searchable
 - Resource metadata exchange
 There a common mechanism(s) for sharing descriptions of available data resources
 - Allow local metadata curation
 Any organization can run registry of their own data resources and share it with the world
- Why federate?
 - Distribute metadata curation
 Allow experts who provide/operate data resources to manage how they are described, update descriptions as they evolve
 - No single point of failure (including funding failure)
 - Allow innovation in providing search capabilities
- How do we federate?
 - Common metadata exchange mechanism
 We propose starting with OAI-PMH
 - Common metadata schema

A Registry Federation

Want This...

Common protocols

Mappings between content and approaches of different projects

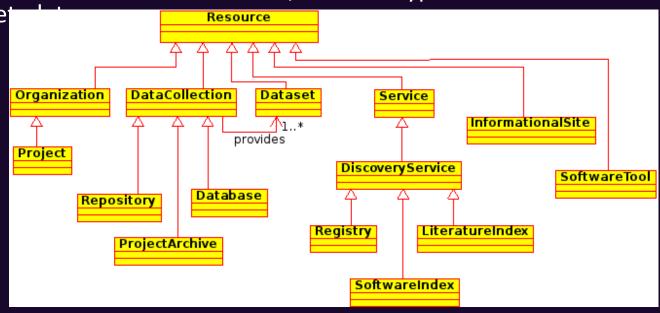
Not This...

Lots of incompatible resources and catalogs

Confusion, frustration, data loss, missed opportunity

Words, words, words

- For this to work, we need words that describe the resources being registered
- Some terms are generic (based on Dublin Core (dublincore.org)):
 - Organization
 - Contact information
 - Access methods and locations
- But others have to be domain- (i.e., materials-) specific
- Not the complete metadata required to fully document the data in the resource
- Want to be user-friendly, which currently means selecting from a relatively limited list of high-level terms and using searchable free text


Resource Concept Model

- A Resource is
 - A thing we want to describe and discover
 - An identified, described, and discoverable component of the distributed data environment
 - Different types of resources
 (some can be of multiple types simultaneously)

Model implies some common metadata, each subtype can add

additional me

What kinds of Resources do we want to share and discover?

Categories of Resource Metadata

- **Identity** -- how we recognize it
- Role what type of Resource is it
- Publication -- who is responsible
- Content -- what it is about
- Access -- how to get at it
- Applicability -- how it applies to different domains
 - Can have multiple entries, each containing metadata specific to a different domain
 - Include a section for Materials Science metadata

Metadata Exchange: Formats

- Format: How to encode metadata
- Common encoding mechanisms currently in use:
 - XML (as defined by XML Schema)
 - recommended for WG deliverable
 - JSON (as defined by JSON Schema)
 - JSON-LD
- Work at NIST: interoperability between these formats
 - Best practices for define format schemas
 - Provides technical mechanism for supporting extensibility
 - Enable well-defined mechanisms to convert between
 - https://github.com/usnistgov/mgi-resmd
- Collaboration on schema welcome
 - General Resource metadata, formatting (via Schema)
 - Materials Science-specific metadata

Technical Collaboration

- "Entry-level" involvement
 - Describe your resources at one of the community registries
- Contribute to metadata schema development
- Operate a registry for your organization
 - Can run an instance of the NIST MRR application
 - Good if you have a larger number of records to share
 - Can connect to your local metadata infrastructure
- Create your own registry application
 - Support exchange format
 - Support OAI-PMH; help set profile
 - Prototype alternate exchange mechanisms

"Do I have to give you my data?"

- NO.
- The data can be hosted somewhere and an entry added to the NMRR (or another instance) to point to where the data is and how to access it.
- Companies, universities, other agencies, professional societies, etc., are all welcome to participate, maintaining control over how their data is stored and accessed.
- Great value to smaller projects and targeted collections
- We are ready to start testing metadata exchange via OAI-PMH

Intent for NIST registry instances

- Work with others to improve data sharing and discovery through a federated system
- Possible "registry of registries" to facilitate access across multiple registries and institutions
- Eventually primarily have records for NIST-specific resources (projects, data, software, etc.)
- Host focused registry instances for particular applications in which NIST works or has an interest

Working group overview

Case statement submitted Jan. 2016

 Proposed timeline of 12-18 months for a pilot materials resource registry system

- Approved July 2016
 - thus dates are now shifted back six months from the original proposal

Full timeline

- Month 1 (Jul '16)
 - recruit domain specialists to participate in WG
- Month 2 (Aug/Sep '16)
 - initiate discussions about conducting a survey of existing materials science data providers
 - develop 20 typical data discovery queries to inform metadata discussions
- Month 3 (Sep/Oct '16)
 - hold meeting to draft 1st version of metadata extensions to Dublin Core
- Months 4-8 (Oct '16-Feb '17)
 - disseminate draft to the materials science community, both within and external to RDA, and solicit feedback
- Month 8 (Feb '17)
 - hold second two-day meeting to refine <u>metadata extensions and establish implementation</u> <u>pilot program</u>
 - E.g., NMRR, MDF, others TBD within WG
- Months 9-12 (Mar Jun '17)
 - implement pilot federated registry and recruit testers/evaluators
 - evaluate granularity issues
 - write best practices guidelines document
- Months 13-15 (Jul Sep '17)
 - fine tune metadata definitions and document metadata development process: what worked well, what didn't
 - expand content of pilot registry
- Months 16-18 (Oct Dec '17)
 - Prepare final document for delivery to RDA

Deliverables

- Two main deliverables for WG:
 - Report containing materials metadata extensions to Dublin Core
 - 2. Pilot with connected registries to demonstrate harvesting

 Plus smaller items along the way (meetings, drafts, etc.)

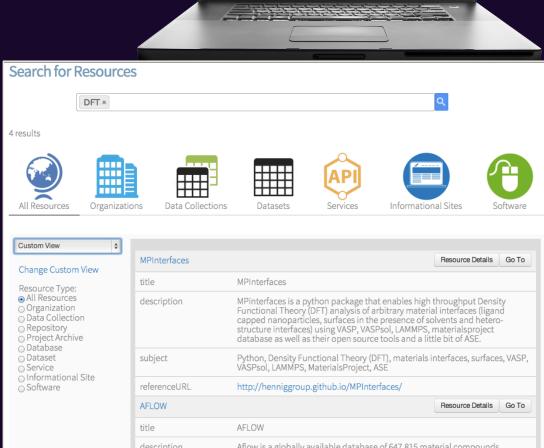
Where are we?

- WG has been created with an initial roster of members
- At this meeting, we are identifying known efforts and discussing materials science queries
- Need to determine mechanism and date of next meeting. Telecon? Part of an existing meeting (e.g., CHiMaD)?
- Need to plan meeting for approx. March 2017

Identification of existing efforts

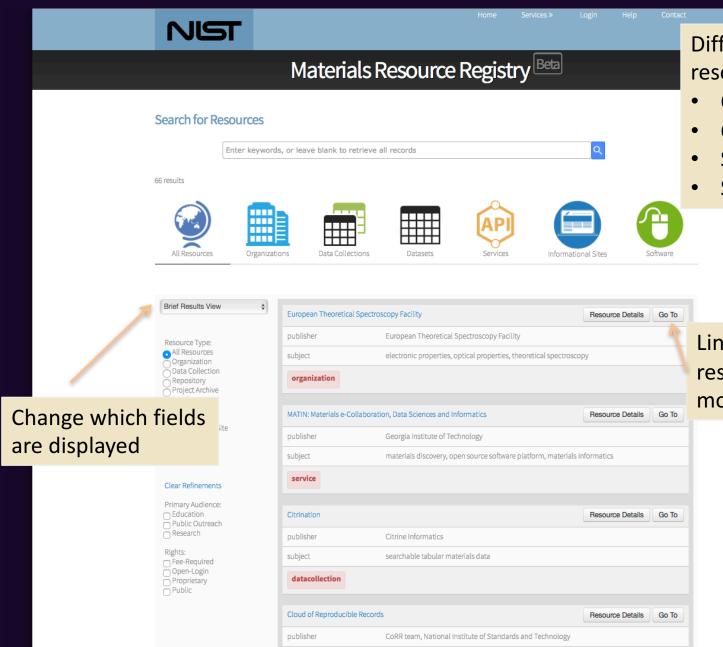
- Registries and projects with data sharing enabled
 - E.g., nanoHUB, Materials Data Facility, NoMaD, NIMS, Citrine, +?

- Ontologies, vocabularies, etc.
 - Collect items on WG wiki page for this effort?
 - XML-based schema repository under development


Previous wordplay work

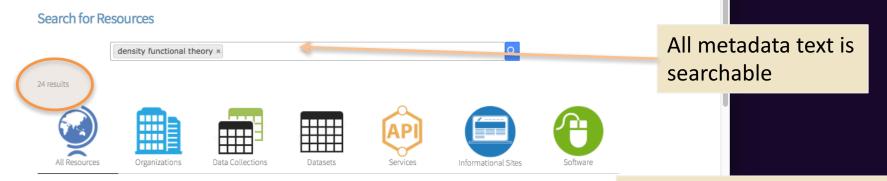
- Some schemas, vocabularies, and ontologies
 - MatML, ThermoML, Plinius ontology, Ashino ontology, MatOnto,
 PREMAP, ONTORULE (steels), SLACKS, MatOWL, matvocab
 - Nice review article:
 - X. Zhang, C. Zhao, and X. Wang, Computers in Industry, 73 (2015) 8-22.
- Cover various areas but not everything
- Some are being developed (at all levels), others are dormant
- Others are proprietary or haven't been publicly released

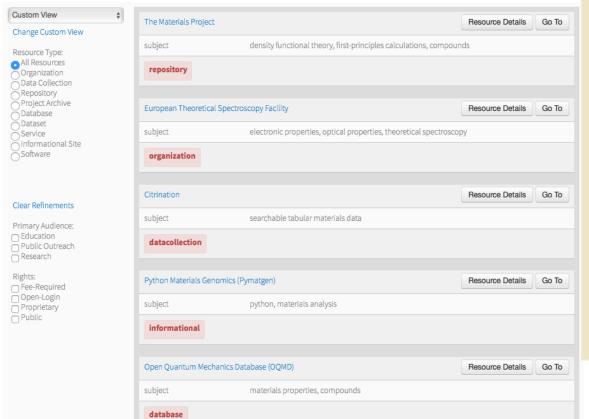
Example effort: NIST pilot


NIST Materials Resource Registry

- General materials science resources
 - ~ 70 resources at the moment;
 working to migrate others from the MGI code catalog
- Intended to interact with other registries that are more focused and/or housed at other institutions
- OAI-PMH protocol enabled, built on the Materials Data Curation System platform
 - Code on GitHub
 - But don't require others to use the same software!

Browse Registered Resources




Different types of resources, including:

- Organizations
- Collections
- Services
- Software

Links to registered resources and more information

Search for resources

Moving toward resources connected by metadata harvesting protocols such as OAI-PMH

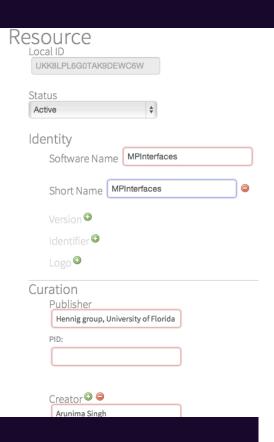
For example:

- Materials data facility
- Instances hosted by universities or professional societies
- Other implementations that use OAI-PMH but different code

Get More Information

	Project REST API		
Resource Details	Detailed information including		
National Renewable Energy Laboratory			
localid	DYJM46H37MU0FHYBE8NE	 who created 	
status	active	who maintai	
title	National Renewable Energy Laboratory Materials Database	 what they co 	
shortName	NRELMatDB	 how to acce 	
publisher	National Renewable Energy Laboratory	Plus links to the resou	
contributor	Ann Deml, Stephan Lany, Haowei Peng, Vladan Stevanovic, Jun Yan, Pawel Zawadzki	Plus links to the resot	
name			
description	NRELMatDB is a computational materials database with the specific focus on materials for not limited to, photovoltaic materials, materials for photo-electrochemical water splitting NRELMatDB is to enable and facilitate the access and exchange of computational data be guidelines outlined in the Presidential Materials Genome Initiative (http://www.whitehou.	g, thermoelectrics, etc. The main goal of etween different research groups following the	
subject	renewable energy, enthalpies of formation, enthalpies of decomposition, band gaps, diel	ectric functions	
referenceURL	http://materials.nrel.gov/		
referenceCitation	"Correcting density functional theory for accurate predictions of compound enthalpies of energies". V. Stevanovic, S. Lany, X. Zhang, A. Zunger, Physical Review B 85, 115104 (2 http://dx.doi.org/10.1103/PhysRevB.85.115104, "Band-structure calculations for the 3d Physical Review B 87, 085112 (2013), http://dx.doi.org/10.1103/PhysRevB.87.085112, Lany, J. Phys.: Cond. Matter 27, 283203 (2015), http://dx.doi.org/10.1088/0953-8984/	2012), I transition metal oxides in GW". S. Lany, "Semiconducting transition metal oxides". S.	
primaryAudience	research		
materialType	metal, semiconductor		
structuralMorphology	bulk, crystalline		
propertyClass	thermodynamic, optical, simulated		
computationalDataAcquisitionMethod	density functional theory calculation		
computationalDataAcquisitioninetriou	density functional theory calculation		
rights	public public		

about resources,


- them
- ns them
- ntain
- ss them

irces themselves

Experimental & computational

High-Throughput (Combinatorial) "Foundry" for Inorganic Materials: "Data on Demand"				
localid	8AWGGH6T0XYUAELMF98P			
status	active			
title	High-Throughput (Combinatorial) "Foundry" for Inorganic Materials: "Data on Demand"			
publisher	National Institute of Standards and Technology (NIST)			
creator	Martin Green			
name	Nam Nguyen			
emailAddress	htems@nist.gov			
phoneNumber	(301) 975-5160			
description	The high-throughput "foundry" for inorganic materials develops combinatorial measurement methods and metrologies for the rapid generation of comprehensive and consistent datasets. Manufacturers of devices based on functional inorganic materials can leverage these methodologies and/or datasets to screen and select new materials more rapidly and intelligently.			
subject	combinatorial materials science			
referenceURL	https://mgi.nist.gov/high-throughput-combinatorial-foundry-inorganic-materials-data-demand			
primaryAudience	research			
materialType	inorganic			
structuralMorphology	film			
propertyClass	optical, non-specific			
experimental Data Acquisition Method	spectroscopy, scattering-diffraction			
sampleProcessing	vapor deposition			
rights	public			
projectarchive				

Add a Resource

Built on the Materials Data Curation System software, but with a specialized schema and interface

Ма	terials Science Material Types polymer organic composite ceramic	ømetal øoxide øsemicond □biomateri		✓ nanoma✓ inorgani✓ non-speco supercor	c cific	
	Morphology/Str 2D fiber interfacial interphase composite nanotube	uctures amorphou fluid bulk 1D line defect	• •	∦non-specifio ∦crystalline □ quasi-perio ∦film		
	Material Proper	nic ⊜optio ♂ simu		□ transp ✓ structi		
	Experimental Da electron micro indentation calorimetry atom probe m	oscopy	□ impa □ othe □ spec	act testing	scattering-diffraction load frame testing optical microscopy non-specific	
	Computational computationa numerical sim molecular dyr phase field ca statistical med	al thermodyna nulations namics simula lculation	mics	□ boundar☑ density fu□ multiscal□ finite eler	y tracking/level set unctional theory calculation le simulations ment analysis arlo simulation	□ non-specific □ crystal plasticity calculation □ dislocation dynamics
	Sample Process	ing Methods				

Seed NMRR metadata fields

Version 1. These will change based on WG efforts!

Material Types	MetalSemiconductorCeramicPolymerBiomaterial	Organic Inorganic Oxide Composite Nanomaterials	5	Superconductor Non-Specific Other	?	(recommended)
Morphology/Structures	Crystalline Amorphous Fluid Quasi-periodic Bulk 2-Dimentional	 1-Dimentional Film Nanotube Fiber Composite Interfacial 		□ Interphase □ Line Defect □ Point Defect □ Non-Specific □ Other	7	(recommended)
Material Property Classes	□ Optical □ Mechanical □ Thermodynamic	□ Structural □ Simulated □ Diffusion		DefectNon-SpecificOther	②	(recommended)
Experimental Data Aquisition Methods	□ Electron Microscopy □ Scattering/Diffraction □ Calorimetry □ Load Frame Testing □ Impact Testing		сору	☐ Indentation ☐ Dilatometry ☐ Other	?	(recommended)
Computational Data Aquisition Methods	 Density Functional Theory Molecular Dynamics Simulation Numerical Simulations Multiscale Finite Element Analysis Computational Thermodynamics 		 Statistical Mechanics Dislocation Dynamics Phase Field Crystal Plasticity Other 		0	(recommended)
Sample Processing Methods	Casting Annealing Vapor Deposition Milling	Extrusion Pressing Exfoliation Melt Blending		Polymerization Curing Evaporation Other	?	(recommended)

Working group activities

WG items for discussion

- Common location for our work on RDA WG website
- Identification of existing projects and resources.
 What other efforts are represented here?
- Identification of vocabs/ontologies/etc.
- Identification of technical issues
- Planning for follow-up meetings and activities
- Identification of volunteers and interested people

What do you want to share or be able to find? What data sharing efforts are under way?

Sample queries

- Al6065 mechanical properties
- Environmental degradation data for PE in humidity
- Finite element models of turbine blades
- Optical micrographs of gamma phases in Ni₃Al
- Compound formation energies for B2-NiAl
- Sintering temperatures for zirconia powders
- Dielectric properties for GaAs
- Calphad models of InGaAs and related materials
- Data for x alloy processed with y method and analyzed with z equipment

• ...

Additional Queries?

RDA websites

- Interest group
 - https://rd-alliance.org/groups/rdacodata-materials-datainfrastructure-interoperability-ig.html
- Working group
 - https://rd-alliance.org/groups/working-groupinternational-materials-resource-registries.html
- Case statement
 - https://rd-alliance.org/group/international-materialsresource-registries-wg/case-statement/case-statementrda-working-group