The **MA**terials **S**imulation **T**oolkit for Defect and Diffusion Calculations

Tam Mayeshiba, Henry Wu, Zhewen Song, Ben Afflerbach, Professor Dane Morgan

University of Wisconsin-Madison

NIST/CHiMaD Data Workshop, Evanston, IL May 2, 2016

MAST's role in the Materials Genome Initiative

Be elegant

What is MAST?

python pymatgen MAterials Simulation Toolkit

$$D = A \exp\left(\frac{-Q}{kT}\right)$$

Motivated by materials science: defects and diffusion

Aterials Simulation Toolkit

Created for simulations (materials calculations)

Workflow manager and post-processor

Outline: Advantages of MAST

- Automatically manage workflows
 - MAST workflow management overview
 - Setting up a simple defect and diffusion workflow
 - Actual diffusion workflow schematic
 - Modify a workflow at any time
 - Manage workflows on various clusters
- Iterate easily over calculation system features
- Store and share workflow knowledge (VASP, diffusion, defects)
- Produce highly organized, consistently calculated data
 - Dilute solute diffusion
 - Scale examples of MAST-generated data
 - Storing MAST-generated data

MAST workflow management overview

Setting up a simple defect and diffusion workflow

Actual diffusion workflow schematic

• 32 steps (not all steps are shown)

MAterials Simulation Toolkit

- Managing one case by hand is time-consuming and error prone
- Managing many workflows for many host-solute combinations by hand would be even worse => use MAST instead

Modify a workflow at any time

Missed a step? Add branches to workflows mid-completion and rerun

Manage workflows on various clusters

- Low headnode load
- Process-independent job monitor
 - Does not require a continuous process
 - Monitor gets information from text files: stable
 - Rebuilt each time: can be interrupted or fail without severe consequences
- Install and run without root access

Iterate easily over calculation system features

Same perovskite oxygen migration barrier workflow applied to different chemical systems, strain states, and dopant positions ⁷ Mayeshiba, T. & Morgan, D. PCCP **17**, 2715 (2015). **10**

Aterials Simulation Toolkit

Store and share workflow knowledge

Extensive out-of-the-box functionality

- Full diffusion coefficient workflow
 - Phonons
 - Multiple hops
 - Frequency models for diffusion
- Full defect formation energy workflow
 - Charged defects
 - Finite size scaling
 - Potential alignment

Save custom workflows for future use

- Input file saved with data
- Reproduce results

Produce highly-organized, consistently-calculated data Example: Dilute solute diffusion

 10^{-9}

 10^{-6}

 ω_0

ω.

diffusiondata.materialshub.org; H. Wu et al., Scientific Data (2016, accepted).

Scale examples of MAST-generated data

- Solute diffusion¹: 20-30 steps per workflow x 230+ host-solute systems => over 6000 calculations
- applied strain responsive strain

- Perovskite oxygen migration, with and without strain^{2,3}: 15-25 steps per workflow x 200+ workflows and 392 steps per workflow x 4 systems => over 5000 calculations
- Surface exchange coefficient descriptor in perovskites⁴: 3 steps per workflow x 1850+ compositions => over 5500 calculations

MAST is good for handling complex workflows and for copying workflows over many systems.

[1] H. Wu et al., Scientific Data (2016, accepted)
[3] T. Mayeshiba & D. Morgan, in preparation
[2] T. Mayeshiba & D. Morgan, PCCP 17, 2715 (2015)
[4] R. Jacobs et al., in preparation

Summary

- Automatically manage workflows
- Iterate easily over calculation system features
 - Composition, strain, defects
- Store and share workflow knowledge
 - Included workflows emphasize diffusion and defect calculations
 - Almost all VASP calculations can be automated using MAST
- Produce highly organized, consistently calculated data

Github repository: <u>http://github.com/uw-cmg/MAST</u> Documentation: <u>http://www.pythonhosted.org/MAST</u> Python Package Index: <u>http://pypi.python.org/pypi/MAST</u>

Acknowledgements

COMPUTATIONAL MATERIALS GROUP

Faculty

- * Izabela Szlufarska
- * Dane Morgan

* Guangfu Luo

Postdocs

- * Georgios Bokas
- * Henry Wu
- * Mahmood Mamiyand
- * Shipeng Shu
- * Yueh-Lin Lee

- * Jia-Hong Ke * Ryan Jacobs
 - * Wei Xie

* Ao Li

Graduate Students

- * Amy Kaczmarowski
- * Austin Way
- * Chaiyapat Tangpatjaroen
- * Franklin Hobbs
- * Huibin Ke
- * Jie Feng
- * Mehrdad Arjmand
- * Shuxiang Zhou
- * Xing Wang
- * Zhewen Song

* Hao Jiang * Hyunseok Ko

* Cheng Liu

- * Lei Zhao
- * Shenzhen Xu
- * Tam Mayeshiba
- * Yipeng Cao

Visiting and Undergraduate Students

- * Aren Lorenson
- * Haotian Wu
- * Josh Perry
- * Liam Witteman
- * Zachary Jensen

- * Benjamin Anderson
- * Jason Maldonis
- * Jui-Shen Chang
- * Tom Vandenberg

T. Mayeshiba: NSF GRFP DGE-0718123, **UW-Madison GERS** H. Wu, Z. Song, B. Afflerbach: NSF SI2-SSI 1148011 Calculations: UW-Madison Center for High Throughput Computing; University of Kentucky Lipscomb Center; NERSC DE-AC02-05CH11231