PARADIM:

Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials

Prof. Darrell Schlom, Platform Director
Dr. Lynn Rathbun, Assistant Platform Director

PARADIM

 A new NSF funded <u>Platform</u> for Materials by Design

Advanced resources for
 New Interface Materials by design

- Accelerating the pace at which new Interface
 Materials for the Next Generation of Electronics are
 designed, realized experimentally, and measured
 - Valleytronics, Spintronics, Multiferroics

Study

Create Useful

Materials

Characterize

Compare with Theory

PARADIM User Facilities for New Interface Materials

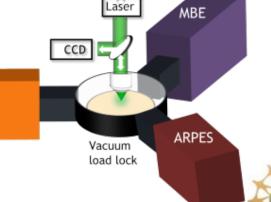
Bulk Crystal Growth at Johns Hopkins

Available Now

Electron Microscopy at Cornell

Available Now

Theory/Simulation at Clark Atlanta


- **Available Now**
- Support Facilities at Cornell and Johns Hopkins

Available Now

Thin Film Growth at Cornell

Available 4Q2016 & 2Q2017

- Standalone MOCVD
- Integrated MBE/MOCVD/ARPES
- Over 60 elemental sources

Raman/PL

MOCVD

Open User Access

- User facilities available via reviewed proposal process
 - No charge to U.S. academic users
 - Available to non-academic and foreign users via recharge process
- Equipment Access and Staff Support
- Proposals now being accepted
- Scope limited to <u>New Interface Materials by</u>
 <u>Design</u>

In House Research Program

- Creating Interface Materials for Valleytronics
 - Control of electrical, optical and magnetic properties by manipulating the valley degree of freedom
 - Controlling the valley phenomena by using complex oxides as active substrates

