Use Cases: Inorganic Systems

G. B. Olson

STRUCTURE- C.S. Smith

INTERACTIVE HIERARCHY -Space-Filling Aggregates:

-Perfection/Imperfecton

-Entity/Identity

-"Mesoscopic" Regime

materials science, biology, geology duality of description

CHMaD

REAL COMPLEXITY VS. IDEALIZED SIMPLICITY. -Cartesian Corpuscular Philosophy -Atom/Continuum

DYNAMICS

-Spatial and Temporal Hierarchy: Smith/Zener -Nonequilibrium

-Path (History) Dependence

CHMaD

STRUCTURE

CH MaD

Hierarchy of Design Models

Example: Parametric Design with CMD

Grain Pinning Dispersion Design

Hard Material Use-Case Groups

- Cobalt alloys
- Nanodispersion-strengthened shape memory alloys
- Si-based insitu composites
- Leveraging: Steel Research Group projects

Cobalt Alloy Designs

G. Olson (NU), D. Dunand (NU), D. Seidman (NU), P. Voorhees (NU), M. Stan (NAISE, ANL) C. Wolverton (NU)

- Motivation:
 - Need turbine blade alloys that exceed the use temperatures of Ni-based superalloys
 - Wear resistant ambient temperature applications to replace Be-Cu
- Goals:
 - Near-term: Ambient temperature bushing alloy
 - Long-term: High-temperature aeroturbine superalloy

laD

PH Cobalt System Chart

L1₂ Stability in Ni vs Co Systems

CALPHAD Step Diagram

Validation of design with LEAP characterization

LEAP validation of alloy nanostructure after tempering at ~780 °C: FCC (Co-rich) matrix and γ' [L1₂ crystal structure, (Co,Ni)₃(Ti,V)-type] strengthening nanoprecipitates

CHMaD

Approach

• Years 1 and 2:

 Accelerated expansion of Co system multicomponent solution thermodynamics, molar volume, and diffusivity databases (high throughput theory and experiment) to incorporate Nb, Mo, Ta, Re and B for FCC, L12 and L phases.

- LEAP microanalytical calibration and validation.

- Years 3 and 4
 - Prototype alloy validation and preliminary process optimization
 - PrecipiCalc calibration and application to detailed process optimization
 - Solidification and homogenization modeling for scale-up
 - Continuum modeling of creep deformation dynamics
 - Neutron and X-ray diffraction evaluation of load partitioning

Nanodispersion-Strengthened Shape Memory Alloys

G. Olson (NU), D. Dunand (NU), W-K. Liu (NU) D. Seidman (NU), A. Umantsev (FS), C. Wolverton (NU)

- Motivation:
 - Widely used in medical, aerospace and automotive sectors
 - Current alloys are susceptible to instability after many cycles
- Goals:
 - Near-term: Pd-stabilized alloys for medical devices
 - Long-term: High-temperature aeroturbine & automotive actuators

SMA System Chart

CH MaD

Precipitation strengthening in (Pd,Ni)₅₀(Ti,Al)₅₀ alloys

SMA Cyclic Stability

TiNi Fatigue Life Prediction: Effect of Increased B2 Strength

Increased life (N) of strengthened alloy compared typical life (N_{o})

- **50% increase in matrix strength** results in increase in fatigue limit (at 10⁹ cycles) from **0.27%** to **0.39%**
- Benefit of B2 strengthening increases as applied strain decrease

Approach

- Years 1 and 2:
 - Accelerated expansion of solution thermodynamics, molar volume, and diffusivity database (high throughput theory and experiment) of Ti-Zr-Hf-Ni-Pd-Pt-Fe-Co-Ni-Al-O-C system for B2, L21, M(O,C), M6O, and martensitic phases
 - LEAP microanalysis calibration and validation
 - D3D characterization of fatigue nucleants and ABC continuum modeling of fatigue nucleation
- Years 3 and 4
 - Prototype evaluation and preliminary process optimization
 - PrecipiCalc calibration and application to process optimization
 - ABC continuum modeling of oxide and carbide evolution during deformation processing
 - Solidification and homogenization modeling for process scale-up

In-Situ Si Composite Materials

P. Voorhees (NU), J. De Pablo (UC), W. Chen (NU), S. Davis (NU), C. Wolverton (NU)

- Motivation:
 - Corrosion resistant, tough alloys
 - Avoid the complications of classical ceramic processing, such as sintering
 - Employ insitu Si-composites
- Goals:
 - Near-term: A multicomponent eutectic growth model
 - Long-term: A tough, castable Si alloy

Si-CrSi₂ composite (Fischer and Schuh, J. Am Ceram. Soc, 2012)

Design Approach

- Primary mechanism of toughening is the delamination of interphase interfaces
- Composites are produced via eutectic solidification
- Industrial partner: Dow Corning

Growth of Si Composites

Due to the anisotropy of the solid-liquid interfacial energy, Si alloys can grow as irregular eutectics

lsotropic

Anisotropic

CHMaD

Al-Si

Approach

- Years 1 and 2:
 - Use multicomponent thermodynamics to inform eutectic growth models
 - Generalize eutectic growth models to multicomponent systems, use existing corrections for anisotropic interfacial energy
 - Predict solidification paths, and thus volume fractions of phases, and length scales of the solidified morphologies
- Years 3 and 4
 - Phase field models for systems with highly anisotropic solid-liquid interfacial energy
 - Develop descriptors of the microstructure
 - Using these descriptors, and models of the toughening process, design optimal microstructures

laD

- Using models for the multicomponent eutectic solidification process develop optimal microstructures
- Characterization using X-ray tomography

2014 SRG Design Projects

- ONR Cyberalloys (Olson, Freeman)
 CMD of Fe & Ti alloys for blast and fragment protection
- **DOE/GM Lightweighting Initiative** (Olson, Wolverton, Voorhees)
 - CMD of cast aluminum for cylinder heads
- **DOE/CAT Lightweighting Initiative** (Olson, Liu)
 - CMD of cast steels for crankshafts
- ArcelorMittal AHSS (Olson)
 - CMD of high-strength automotive Q&P TRIP steels
- NIST/NIU MSAM Additive Manufacturing (Olson, Liu, Cao)

 CMD of Fe & Ti alloys for additive manufacturing
 DARPA/Honeywell Open Manufacturing (QuesTek)
 ICME for SLM additive manufacturing of Ni 718+