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Cohen’s Reciprocity 
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CH MaD

System chart 
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Hierarchy of Design Models 
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Example: Parametric Design with CMD 
Matrix	  +	  Strengthening	  
Dispersion	  Design	  

Grain	  Pinning	  Dispersion	  
Design	  
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Hard Material Use-Case Groups 

•  Cobalt alloys 
•  Nanodispersion-strengthened shape 

memory alloys 
•  Si-based insitu composites 
•  Leveraging: Steel Research Group 

projects 
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Cobalt Alloy Designs 
G. Olson (NU), D. Dunand (NU), D. Seidman (NU),  P. Voorhees (NU), 

 M. Stan (NAISE, ANL) C. Wolverton (NU) 

•  Motivation: 
–  Need turbine blade alloys that exceed 

the use temperatures of Ni-based 
superalloys 

–  Wear resistant ambient temperature 
applications to replace Be-Cu 

•  Goals: 
–  Near-term: Ambient temperature 

bushing alloy 
–  Long-term: High-temperature 

aeroturbine superalloy 
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PH Cobalt System Chart 
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CALPHAD Step Diagram 
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Validation of design with LEAP characterization 
LEAP validation of alloy nanostructure after tempering at ~780°C: 

FCC (Co-rich) matrix and γ’ [L12 crystal structure, (Co,Ni)3(Ti,V)-type] strengthening nanoprecipitates 

• Precipitate is enhanced in Co, Ti; 
slightly enhanced in Ni, V

• Matrix is enhanced in Fe, Cr

Matrix

Precipitate is enhanced in 
Co, Ti;

slightly enhanced in Ni, V

Matrix is enhanced 
in Fe, Cr

Precipitate
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Approach 
•  Years 1 and 2: 

–  Accelerated expansion of Co system multicomponent  
solution thermodynamics, molar volume, and diffusivity 
databases (high throughput theory and experiment) to 
incorporate Nb, Mo, Ta, Re and B for FCC, L12 and L 
phases. 

–  LEAP microanalytical calibration and validation.  
•  Years 3 and 4 

–  Prototype alloy validation and preliminary process 
optimization 

–  PrecipiCalc calibration and application to detailed process 
optimization 

–  Solidification and homogenization modeling for scale-up 
–  Continuum modeling of creep deformation dynamics 
–  Neutron and X-ray diffraction evaluation of load 

partitioning 
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G. Olson (NU), D. Dunand (NU),W-K. Liu (NU)  D. Seidman (NU),  

A. Umantsev (FS),  C. Wolverton (NU) 

Nanodispersion-‐Strengthened	  Shape	  Memory	  Alloys	  

•  Motivation: 
–  Widely used in medical, aerospace and 

automotive sectors 
–  Current alloys are susceptible to 

instability after many cycles 

•  Goals: 
–  Near-term: Pd-stabilized alloys for 

medical devices 
–  Long-term: High-temperature 

aeroturbine & automotive actuators 
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Processing  
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TiNi Fatigue Life Prediction:  
Effect of Increased B2 Strength 

Increased life (N) of strengthened alloy compared typical life (No) 

 

•  50% increase in matrix strength results in increase in fatigue limit (at 
109 cycles) from 0.27% to 0.39% 

•  Benefit of B2 strengthening increases as applied strain decrease 
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Approach 

•  Years 1 and 2: 
–  Accelerated expansion of solution thermodynamics, molar 

volume, and diffusivity database (high throughput theory and 
experiment) of Ti-Zr-Hf-Ni-Pd-Pt-Fe-Co-Ni-Al-O-C system for B2, 
L21, M(O,C), M6O, and martensitic phases 

–  LEAP microanalysis calibration and validation 
–  D3D characterization of fatigue nucleants and ABC continuum 

modeling of fatigue nucleation 
 

•  Years 3 and 4 
–  Prototype evaluation and preliminary process optimization 
–  PrecipiCalc calibration and application to process optimization 
–  ABC continuum modeling of oxide and carbide evolution during 

deformation processing 
–  Solidification and homogenization modeling for process scale-up 
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In-Situ Si Composite Materials 
P. Voorhees (NU), J. De Pablo (UC), W. Chen (NU), 

 S. Davis (NU) , C. Wolverton (NU) 

Si-CrSi2 composite 
(Fischer and Schuh, J. Am Ceram. Soc, 
2012) 

•  Motivation: 
–  Corrosion resistant, tough alloys 
–  Avoid the complications of 

classical ceramic processing, such 
as sintering 

–  Employ insitu Si-composites 

•  Goals: 
–  Near-term: A multicomponent 

eutectic growth model 
–  Long-term: A tough, castable Si 

alloy 
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Design Approach 

•  Primary mechanism of toughening is the 
delamination of interphase interfaces 

•  Composites are produced via eutectic solidification 
•  Industrial partner: Dow Corning 
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Growth of Si Composites 

Due to the 
anisotropy of 
the solid-liquid 
interfacial 
energy, Si alloys 
can grow as 
irregular 
eutectics 

Isotropic Anisotropic 

Al-Si 

L L 
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Approach 

•  Years 1 and 2: 
–  Use multicomponent thermodynamics to inform eutectic growth 

models 
–  Generalize eutectic growth models to multicomponent systems, 

use existing corrections for anisotropic interfacial energy 
–  Predict solidification paths, and thus volume fractions of phases, 

and length scales of the solidified morphologies 
•  Years 3 and 4 

–  Phase field models for systems with highly anisotropic solid-liquid 
interfacial energy 

–  Develop descriptors of the microstructure 
–  Using these descriptors, and models of the toughening process, 

design optimal microstructures 
–  Using models for the multicomponent eutectic solidification 

process develop optimal microstructures 
–  Characterization using X-ray tomography 
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2014 SRG Design Projects 

•  ONR Cyberalloys (Olson, Freeman)  
     - CMD of Fe & Ti alloys for blast and fragment protection 
•  DOE/GM Lightweighting Initiative (Olson, Wolverton, 

Voorhees) 
     - CMD of cast aluminum for cylinder heads 
•  DOE/CAT Lightweighting Initiative (Olson, Liu) 
     - CMD of cast steels for crankshafts 
•  ArcelorMittal AHSS (Olson) 
     - CMD of high-strength automotive Q&P TRIP steels 
•  NIST/NIU MSAM Additive Manufacturing (Olson, Liu, Cao) 
     - CMD of Fe & Ti alloys for additive manufacturing 
    DARPA/Honeywell Open Manufacturing  (QuesTek) 
     - ICME for SLM additive manufacturing of Ni 718+ 
      


