Tools For Materials Design

Peter Voorhees

TOOLS

- Goal: Integrate computations and databases in the materials design process
- To accomplish this new tools are needed:
 - Theoretically Informed Coarse Graining and Evolutionary Design
 - Microstructure Development
 - Rapid Throughput and High Resolution Characterization
 - Integration Accelerated Insertion of Materials

Microstructure Development

- Objective: Model the microstructural evolution of multiphase multicomponent materials
- Phase field methods
 - Easy to add new physics
 - Allows for topological singularities
 - No need to track phase boundaries explicitly
- Level Set
 - Allows for topological singularities
 - No need to track phase boundaries explicitly

Phase Field

- Develop a community code
- One of the closest is FiPy
- Example: nanowire growth, captures fluid dynamics capillarity and diffusion
- Goals:
 - Allow for the incorporation of CALPHAD databases
 - Port to leadership class machines (ANL)
 - Preconditioners/PETSc (ANL)

Schwalbach, Davis, Voorhees, Warren and Wheele

Level Set

- Many of the advantages of the phase field method
- Does not employ a diffuse
 interface
- May be easier to integrate with CALPHAD databases

Shi, Liu and Chopp

Rapid Throughput and High Resolution Characterization

- Goal: provide the data to populate the databases needed for the use-case groups
- This can be done using calculations and experiments
- Calculations: Wolverton group's Open Quantum Materials Database
 - Over 300,000 compounds, and counting
- Experiments:
 - Co-sputtering using three or more pure sources
 - Diffusion between blocks of two or more pure materials
 - Challenge: methods for rapid characterization

Vision of Integrated Analysis Loop: towards a forward model

GISAXS from BCP

Form factor and structural factor to generate GISAXS pattern

19.62 nm PS PS PS-r-PMMA PS-r-PMMA PS SiN Si wafer

Experimental Results Compared to Simulations

Leveraged Resources for 3D Characterization of DSA at ANL

Integration, Accelerated Insertion of Materials

Computational Materials Qualification Acceleration

