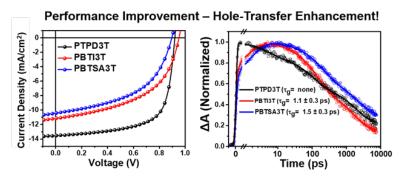


Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells.


Eastham, N. D.; Dudnik, A. S.; Aldrich, T. J.; Manley, E. F.; Fauvell, T. J.; Hartnett, P. E.; Wasielewski, M. R.; Chen, L. X.; Melkonyan, F. S.; Facchetti, A.; Chang, R. P. H.; Marks, T. J.

Caption: Figure 6. Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating.

Caption: Figure 7. Naphthalene Bis(4,8-diamino-1,5-dicarboxyl)amide Building Block for Semiconducting Polymers.

Caption: Figure 8. Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer:ITIC Photovoltaic Materials Probled by Transient Absorption Spectroscopy.

Scientific Achievement

How OPV donor polymer molecular mass, aggregation tendencies of crystallinity (semicrystalline or amorphous), and templating phenomena affect the formation of optimum nanoscale bulk-heterojunction morphologies is poorly understood and holds the key to rationally increasing solar cell power conversion efficiencies and manufacturability, especially for post-fullerene cells (Figure 6). To address these issues, we developed a new readily scaled, synthetically flexible naphthalene bis (4, 8-diamino-1,5-dicarboxyl) amide (NBA) electronaccepting building block (Figure 7). NBA-based polymers were synthesized and demonstrated to have n-type behavior with high electron motilities approaching $0.5 \text{cm}^{2/}$ Vs. Importantly, NBA polymers are strong light absorbers with medium-to-low band gaps and strong π face-on thinfilm nanodomain orientation. In related work, OPVs were fabricated by pairing the smallmolecule strongly light-absorbing post-fullerene acceptor ITIC with high fill-factor donor polymers developed by the Marks group. The resulting photovoltaic materials were examined by a wide range of structural/morphological and exciton dynamic characterization techniques. It is found by transient absorption spectroscopy (Figure 8) that power conversion efficiencies (>10%) closely track ultra-fast exciton separation rates and phase separation domain sizes.

Significance

With development of new post-fullerene acceptor materials affording record OPV power conversion efficiencies, studies focused on understanding fundamental principles of donor-acceptor "mixing" in bulk heterojunction blends becomes critical both for further power conversion efficiency increases and for achieving goals regarding long-term OPV device stability. The research presented in section IIA (Figures 6 and 8) establishes new guidelines for materials choices and processing strategies to form optimal high-performing blend morphologies. In addition, naphthalene bis(4,8-diamino-1,5-dicarboxyl)amide building blocks (NBA) enable new very valuable and rare n-type (acceptor) polymer materials for bulk heterojunction OPVs (section IIA, Figure 7). Due to increased and red-shifted light absorption versus incumbent naphthalenedimide acceptors, we envision NBA-based polymers being leading n-type materials for variety of semiconducting applications, but especially photovoltaics.

Citation

Small Molecule Acceptor and Polymer Donor Crystallinity and Aggregation Effects on Microstructure Templating: Understanding Photovoltaic Response in Fullerene-Free Solar Cells. Eastham, N. D.; Dudnik, A. S.; Aldrich, T. J.; Manley, E. F.; Fauvell, T. J.; Hartnett, P. E.; Wasielewski, M. R.; Chen, L. X.; Melkonyan, F. S.; Facchetti, A.; Chang, R. P. H.; Marks, T. J. *Chem. Mater.* **2017**, *29* (10), 4432-4444. **DOI**: 10.1021/acs.chemmater.7b00964.