M^CCormick

Northwestern Engineering

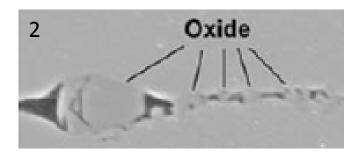
Archetype-Blending Multiscale Continuum Method

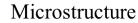
John A. Moore
Professor Wing Kam Liu
Northwestern University
Mechanical Engineering

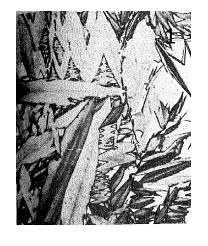
Outline

- Background and Motivation
- Archetype-Blending Continuum (ABC) Theory
- Computational Fatigue
- ABC microplasticity simulation
- ABC fatigue simulations
- Conclusions

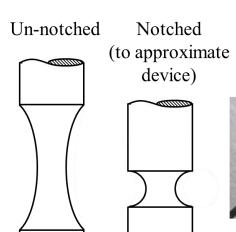
Motivation and Background

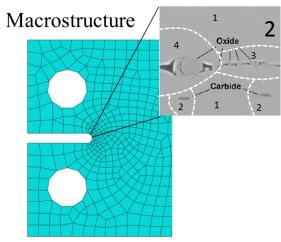






Microstructure Macrostructure

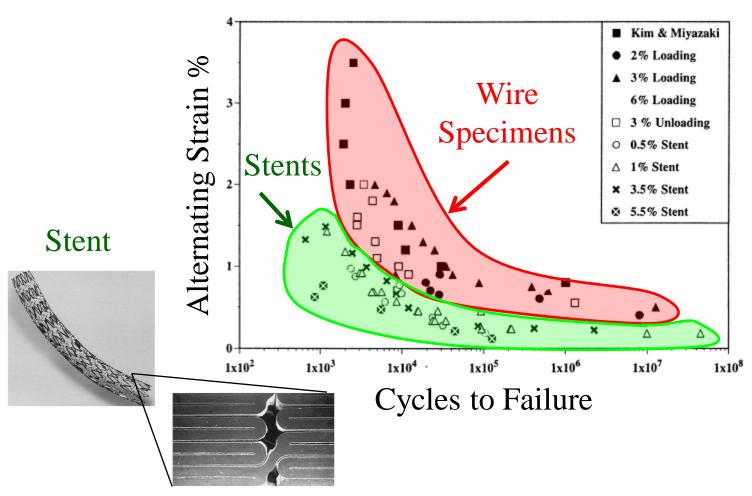




notch

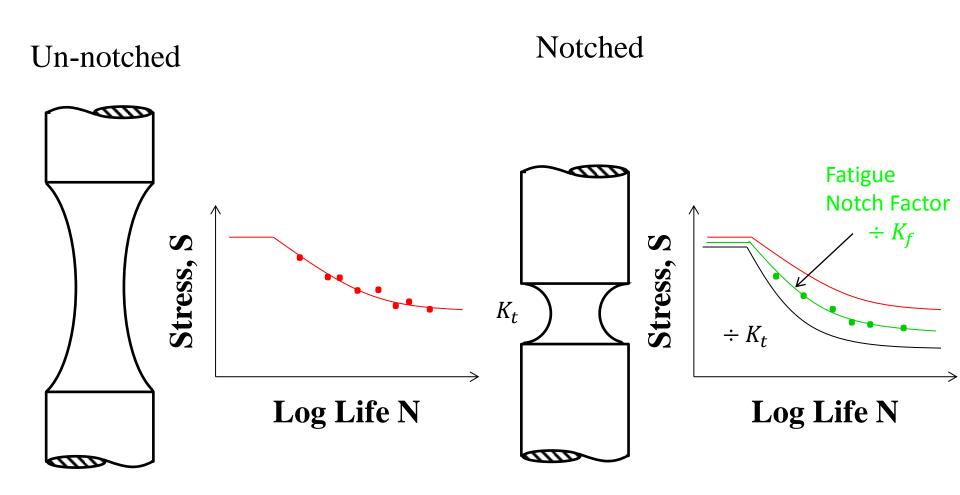
- 1 Porter, Easterling, 2004
- 2 Toro et. al, J. Mater. Eng. Perform 2009
- 3 Pelton, et al J. Mech. Behav. Biomed Mater., 2

Fatigue in Biomedical Stents



Duerig, T., A. Pelton, and D. Stöckel, An overview of nitinol medical applications. Materials Science and Engineering: A, 1999.

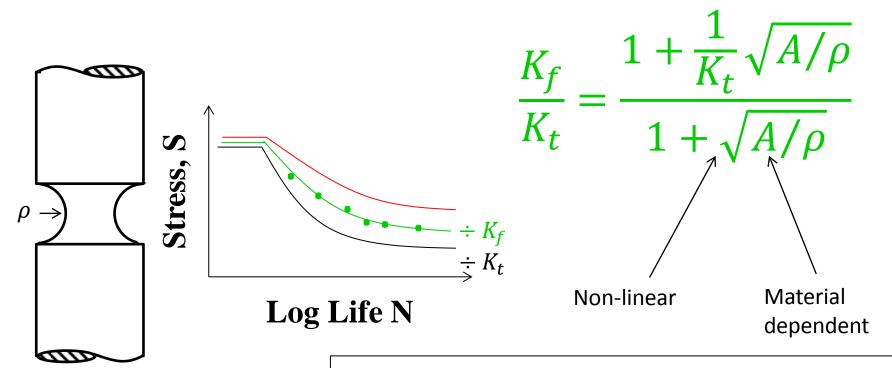
Notch Effects



Neuber's Equation

Notched

Neuber's Equation



Non-linear material dependent behavior indicates microstructural dependence

Schijve, Fatigue of Structures and Materials, 2001

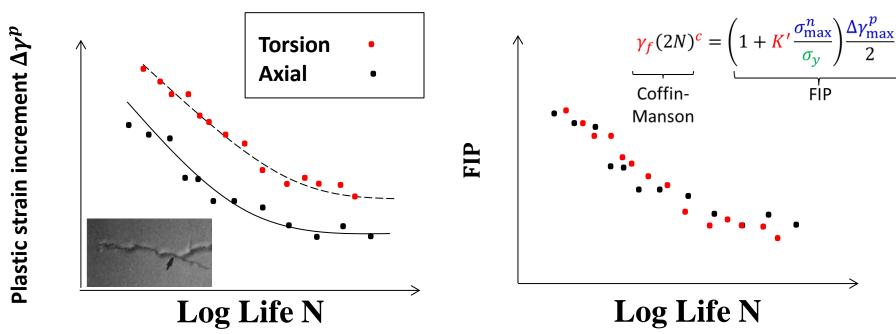
Computational Fatigue

• Fatemi-Socie in 1988 proposed a **f**atigue **i**ndicating **p**arameter (**FIP**) to account for discrepancies in ϵ -N curves due to loading condition

Empirical Constant

Material Parameter

From FEM/Experiment



Fatemi and Socie Fatigue & Fracture of Engineering Materials & Structures, 1988

Fatigue Regimes

Total fatigue life is broken into three regimes¹

$$N_{Total} = N_{Inc.} + N_{MSC} + N_{LC}$$

- Incubation ($N_{Inc.}$): nucleation and growth of crack beyond influence of microstructural notch¹
 - Characterized by microscale plastic strain and nonlocal damage parameters
- Microstrucurally Small Cracks (N_{MSC}) : growth of crack from incubation size a_i , such that $a_i < a < k$ GS, where k is (1-3) and GS the lengthscale of a grain or other prominent microstructural features¹
 - Characterized by elasto-plastic fracture mechanics
- Long Cracks (N_{LC}): macroscopic crack growth¹
 - Characterized by linear elastic fracture mechanics

This slide was not originally presented on 3/4/2014

1 Horstemeyer, ICME for Metals, 2012

Treatment of Fatigue Regimes

Total fatigue life is broken into three regimes

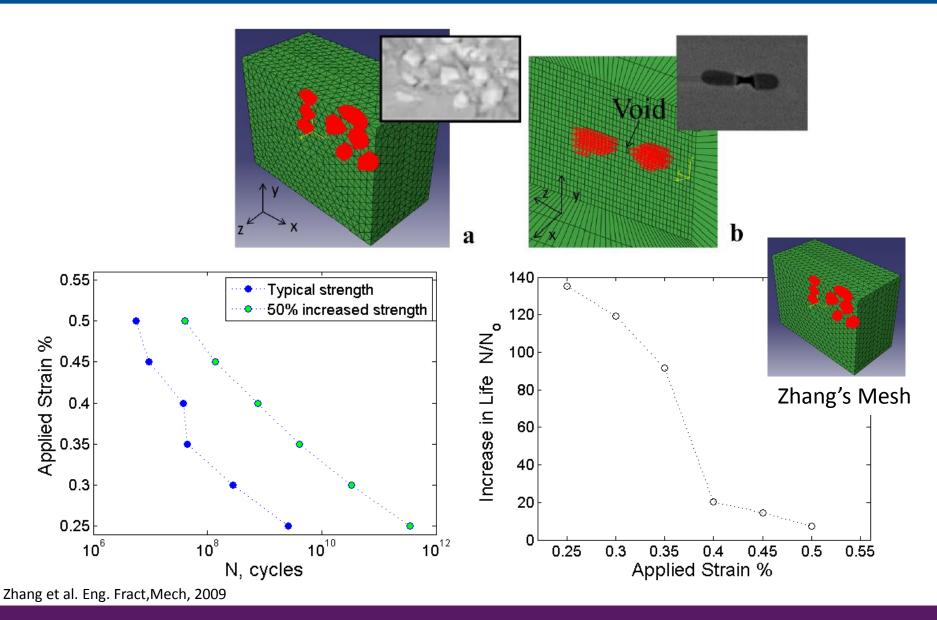
$$N_{Total} = N_{Inc.} + N_{MSC} + N_{LC}$$

- The following work will address only $N_{Inc.}$ as it accounts for a large % of fatigue life for many alloys
- The ABC theory will be able to model the N_{MSC} and N_{LC} regimes by:
 - Studying several (5-10) initial cycles and determining $N_{Inc.}$ from a FIP
 - $-\,$ Using this as an initial state for explicit modeling of N_{MSC} and N_{LC}
 - $-N_{MSC}$ region could be considered 1 element (kGS = 1 element) and growth modeled with methods such as XFEM¹
 - Once crack grows beyond 1 element N_{LC} can be modeled based on basic damage models, strain gradients in ABC will aide in regularization (reducing mesh sensitivity) and localization

1 Menouillard, Thomas, et al. "Time dependent crack tip enrichment for dynamic crack propagation." Int. J. of Frac.162.1-2 (2010): 33-49.

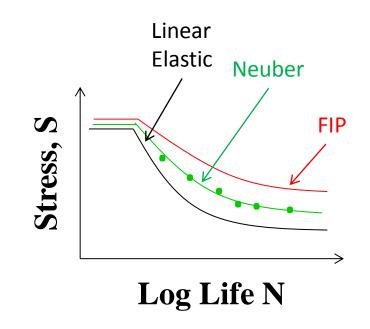
This slide was not originally presented on 3/4/2014

Direct Numerical Simulation of FIP



Fatigue Theory Summary

- Linear Elastic Theory
 - Overly conservative
 - No material information
 - No microscale information
- Neuber's Theory
 - Require extra material tests
 - Only works for simple notches
 - No microscale information
- Fatemi-Soci (FIP) Theory
 - No macroscale notch information



Archetype-Blending Continuum (ABC) Theory

- Combines generalized continuum mechanics and constitutive modeling
- Degrees of freedom represent partitions of microstructure
- Each degree of freedom is similar to assembly of Eshelby problems in micromechanics but strain are determined by solving equations of motions
- Virtual Power

$$\delta P_{int} = \int_{\Omega}^{\text{Intrinsic stress}} (\hat{m{\sigma}}: \delta \widehat{m{L}} + m{\sigma} m{\sigma}: \delta \widehat{m{L}}
abla + m{s}^n: \delta \hat{m{\Lambda}}^n + m{s} m{s}^n: \delta \hat{m{\Lambda}}^n
abla) d\Omega$$

Elkhordary et al., Comput. Methods Appl. Mech. Engrg., 2013

DOF₁

Interaction

DOF₂

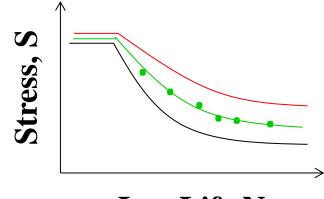
DOF*n*

Notched Fatigue and ABC

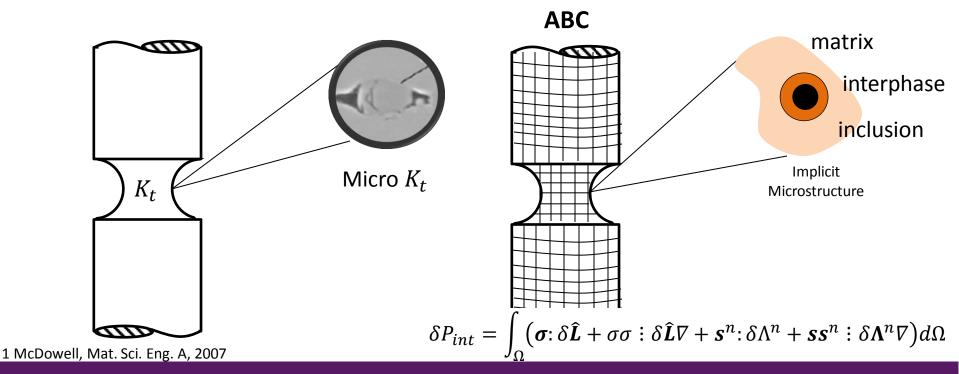
- Non-linear reduction in S-N curve is :
 - Material dependent

03/24/2014

- A function on macroscale strain gradients¹
- A function of microscale strain gradients¹



Log Life N

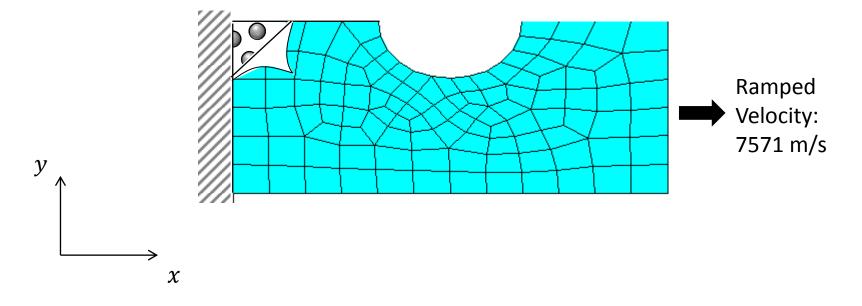


Models

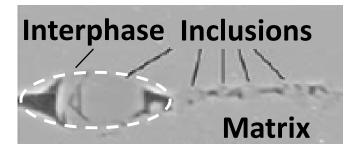
10% volume fraction

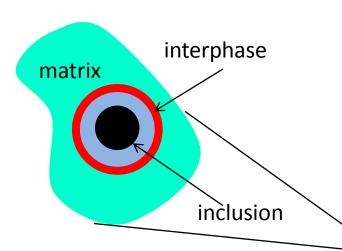


1% volume fraction



Implicit Microstructure





Matrix: Young's Modulus: 200 GPa

Yield Strength : 250 MPa

Interphase: Young's Modulus: 200 GPa

Yield Strength : 250 MPa

Inclusion: Young's Modulus: 2000 GPa

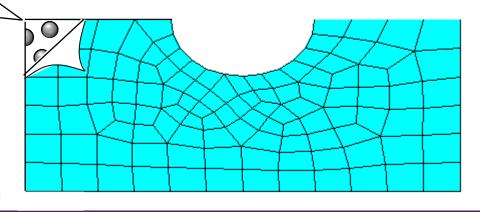
Linear Elastic

Degree-of-Freedom 1 ε^1 Matrix

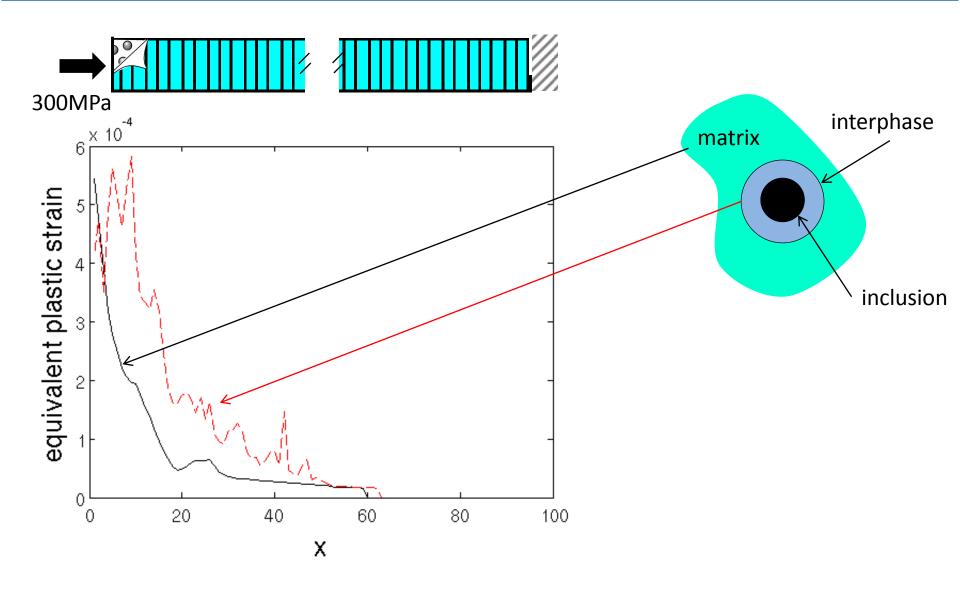
Degree-of-Freedom 2 ε^2 Interphase

 $\mathfrak{E}(\varepsilon^2)$ Inclusion

 $\mathfrak{E} = \mathsf{mapping} \ \mathsf{of} \ \mathsf{strain} \ \mathsf{using} \ \mathsf{Eshelby's} \ \mathsf{solution}$

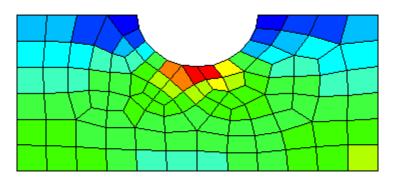


Microplasticity



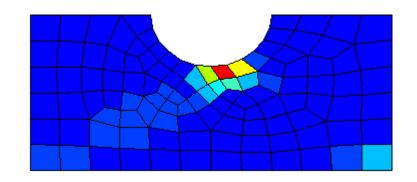
Response of Notched Sample

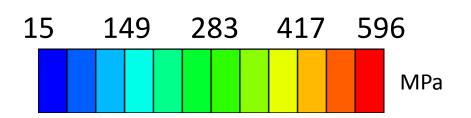
Linear Elastic Macro Stress

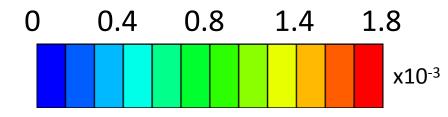


Stress w/o notch is 300 MPa, $K_t \approx 2$

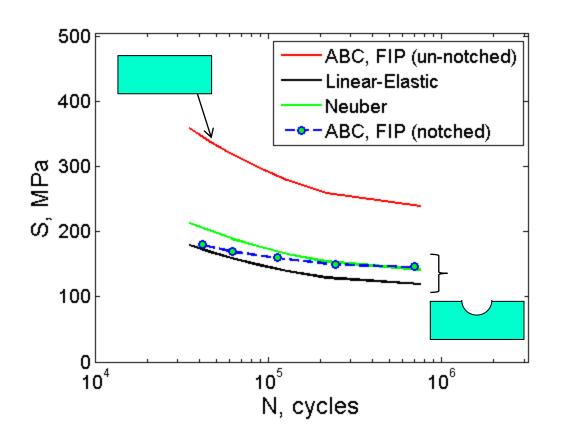
Equivalent Plastic Interphase Strain







Notched Sample Fatigue Prediction



Summary and Conclusions

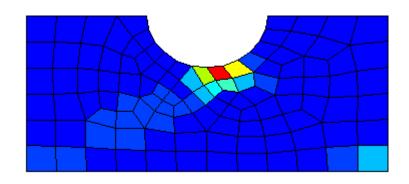
 ABC uses a multiscale multicomponent formulation rooted in micromechanics to predict material behavior

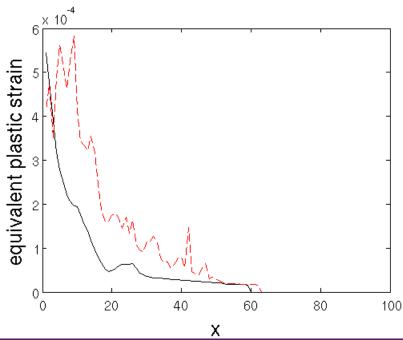
 ABC can predicted notch sensitivity of notched devices, giving information of geometric effects and statistics

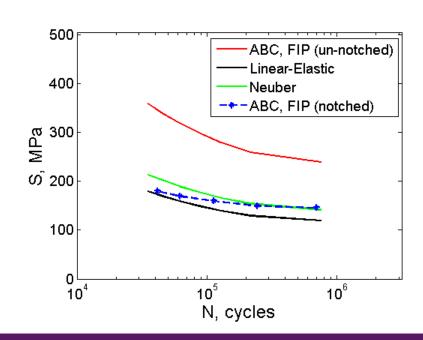
 Goal is that device designers can optimize microstructure and geometry concurrently

Questions / Comments





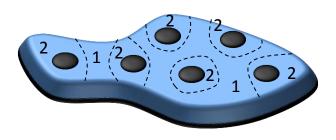




Backup

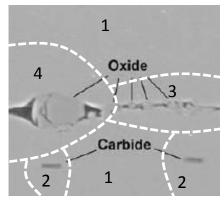
Constitutive Modeling

Simple Partition



Archetype A = matrix Archetype B = Inclusion Partition 1 = matrix
Partition 2 = matrix
inclusion

Realistic Partition



Partition 1 = matrix

Partition 2 = matrix carbide

Partition 3 = matrix oxide

Partition 4 = matrix oxide interphase

Archetype A = matrix

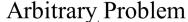
Archetype B = carbide

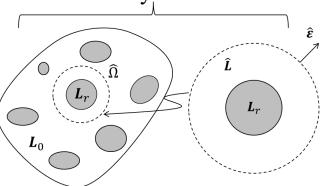
Archetype C = oxide

Archetype D = damaged matrix/oxide interphase

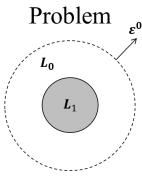
Toro et. al, J. Mater. Eng. Perform Volume 18(5–6) August 2009

Eshelby's Problem





Eshelby's Problem



Then the inclusion strain is

$$\varepsilon_1 = \{I + SL_0^{-1}(L_1 - L_0)\}\varepsilon^0$$

This maps the applied strain to the inclusion strain based on the material properties of the matrix and inclusion and Eshelby's tensor

Homogenization with Eigenstrain $arepsilon^*$

$$L_1(\varepsilon^0 + S\varepsilon^*) = L_0(\varepsilon^0 + S\varepsilon^* - \varepsilon^*)$$

Where L_0 and L_1 are stiffness tensors, S, Eshelby's tensor and $arepsilon^0$ the applied strain

Solving for Eigenstrain ε^* gives :

$$\varepsilon^* = -[(L_1 - L_0)S + L_0)]^{-1}(L_1 - L_0)\varepsilon^0$$

If the inclusion strain ε_1 is given by:

$$\varepsilon_1 = \varepsilon^0 + S\varepsilon^*$$

For an arbitrary complex problem a region around the inclusions (r) can be considered with a material properties \hat{L} and applied strain $\hat{\epsilon}$, then the inclusion strain is

$$\varepsilon_r = \{I + S_r \hat{L}^{-1} (L_r - \hat{L})\}\hat{\varepsilon}$$

Different assumptions for \hat{L} and $\hat{\epsilon}$ yield many popular micromechanics models

- Dilute Model : $\hat{L} = L_0$; $\hat{\varepsilon} = \bar{\varepsilon}$
- Mori-Tanaka : $\hat{m{L}} = m{L}_0$; $\hat{m{arepsilon}} = ar{m{arepsilon}}_{m{0}}$
- Self Consistent : $\widehat{\boldsymbol{L}} = \overline{\boldsymbol{L}}$; $\widehat{\boldsymbol{\varepsilon}} = \overline{\boldsymbol{\varepsilon}}$