QuesTek's Ferrium C64 carburizable gear steel

<u>Themomechanical Process Optimization</u> and High-Cycle Fatigue Resistance

J. Sebastian J. Padbidri G. Olson C. Houser

QuesTek Innovations LLC

SRG Meeting, Evanston, IL 25 March 2014

Agenda

- SBIR program overview
- QuesTek background
- Ferrium C64
- Fatigue initiation and microstructural fatigue modeling
- Impact of HIP on fatigue
- C64 results
 - Axial fatigue
 - Single tooth bending fatigue
- Conclusions

"Fatigue Resistant Martensitic Steel for Rotorcraft Drive Train Components"

- Army-funded SBIR program Topic No. A10-035
- Phase I project Contract No. W911W6-11-C-0007
- Phase II project Contract No. W911W6-11-C-0053
- Program Officer Matthew Spies & Clay Ames
- Phase I
 - Ferrium C64 steel was developed to improve bending and contact fatigue resistance
 - Developed novel hot isostatic pressing (HIP) technique to improve interfacial cohesion between nonmetallic inclusions and steel matrix
 - ~40% improvement in mean fatigue life behavior
- Phase II
 - Optimize HIPping process

Steel

Research

Group

Ьe

- Manufactured Ferrium C64 specimens (axial and single tooth bending fatigue) that were testing against incumbents (*Pyrowear* X53)
- Statistical analysis shows HIPping significantly improves C64 fatigue (axial) performance

Background - QuesTek Innovations LLC

- Founded 1997
- 15 employees (7 with PhDs)
- A global leader in computational materials design:
 - Our *Materials by Design*[®] technology and expertise applies Integrated Computational Materials Engineering (ICME) tools and methods to design new alloys 50% faster and at 70% less cost than traditional empirical methods
 - Aligned with President Obama's Materials Genome Initiative
- Creates IP and licenses it to alloy producers, processors or OEMs
- 30+ patents awarded or pending worldwide

Steel

Research

Group

Fe

- 4 computationally-designed, commercially-sold alloys
- Designing 10+ new Fe, Al, Cu, Ni, Co, Nb, Ti, Mo and W based alloys for government and industry

Computational Materials Design Overview

Ferrium C64—TMP & HCP Steel Research Group Mtg., Evanston, IL 25 March 2014 **DUESTER** INNOVATIONS LLC Materials By Design®

Ferrium[®] C61[®] and C64[®] property comparisons

	Alloy	YS (ksi)	UTS (ksi)	Core hardness (HRC)	El (%)	RA (%)	K _{ıc} Toughness (ksi√in)	Achievable surface hardness (HRC)	Tempering temperature (°F)
	AISI 9310	155	175	34-42	16	53	85	58-62	300
C61 = AMS 6517	Pyrowear® Alloy 53	140	170	36-44	16	67	115	59-63	400
C64 = AMS 6509	Ferrium® C61™	225	240	48-50	16	70	130	60-62	900
	Ferrium® C64™	199	229	48-50	18	75	85	62-64	925

Substantially free of primary carbides

Potential platform applications for C64—examples

- Rotorcraft
 - Upgrades e.g. V-22
 - New platforms e.g. CH-53K
 - Evaluation in new U.S. Army-funded Future Advanced Rotorcraft Drive Systems (FARDS) program
- Weight/size-sensitive or hightemperature ground vehicle drive assemblies
- Bearings
- Vehicle plate armor
- Other TBD

V-22 Future Upgrade

Commercializing new alloys through licensees

All four are double-vacuum-melted VIM/VAR steels: *Ferrium* S53[®]

Licensee #1 - Feb. 2007: Licensee #2 - Dec. 2007:

Ferrium C61[™] and C64[™] Licensee #1 - Nov. 2009:

<u>Ferrium M54</u>

Licensee #1 - April 2010:

More Licensees are Anticipated QuesTek is creating robust, competitive supply chains

Introduction: Fatigue crack nucleation at inclusions

Introduction: Fatigue crack nucleation at inclusions

- Intact
- Debonded
- Fractured particles

Alumina particles in Al 6061 matrix: (a) debonding, (b) particle fracturing* Segurado and Llorca, IJSS, 41, 2004, 2977-2993.

Ben Tiemens, PhD Thesis, NWU, 2006

FE simulations reveal debonded inclusions to be the worst case scenario for fatigue crack nucleation

FE simulation of stress localization around damaged particles

Void formation at primary inclusions in mod4330 steel

Modeling process-structure-property relations to support *Materials by Design*®

Modeling: fatigue indicator parameters (FIPs)

Fatigue indicator parameters (FIPs) applied at the grain scale can reflect local driving forces for fatigue damage formation

e.g. Fatemi-Socie Parameter (1988) → Accounts for max shear plus effect of crack opening force

$$P_{FS} = \frac{\Delta \gamma_{\max}^{p^*}}{2} \left(1 + K' \frac{\sigma_n^{\max^*}}{\sigma_y} \right)$$

$$P_{FS} \iff \Delta CTD \quad \text{(cf. McDowell & Berard, FFEMS, 1992)}$$

(cf. Findley and Saxena, 2006, Dunne, 2006, Papadopoulos, 1995, Dang Van, 1993, and others for similar multiaxial parameters applied at grain scale)

Materials By Design®

Modeling: process route effects—shot peening

A hierarchical modeling approach followed to couple process route effects with microstructure attributes that influence fatigue crack nucleation and growth in HCF

Modeling: process route effects – HIPing

HIPing significantly improves fatigue life for inclusion initiated failures

Optimization of C64 HIP parameters

Temperature

Variation in strength with strain (left); variation grain size and yield strength with temperature (right)

Results – HIPing is very beneficial to axial fatigue life

HIPing significantly improves fatigue life for inclusion initiated failures

- All samples loaded at a peak load of 160 ksi and load ratio 0.1
- Samples considered runouts at 10⁷ cycles
- 13 UnHIPed samples with 1 runout
- 14 HIPed samples were tested with 7 runouts

- Weibull survival probability plots
 indicate benefit of HIPing
- Significant increase in fatigue life for a 1% failure probability

Results – effect of number of runouts

• Number of runouts greatly influences the 'shift' of the Weibull distribution describing the scatter

MLE approach

The pdf of a 2 parameter Weibull distribution is given by

$$f(x; \lambda, \alpha) = \begin{cases} \frac{\alpha}{\lambda} \left(\frac{x}{\lambda}\right)^{\alpha - 1} e^{-(x/\lambda)^{\alpha}} & x \ge 0\\ 0 & x < 0 \end{cases}$$

For a discrete sample of size n, optimum parameters are estimated by maximizing the likelihood

$$L = \prod_{i=1}^{n} f(x_i; \hat{\lambda}, \hat{\alpha})$$

For a discrete sample of size N, with n failures (Type I censoring)

$$L = \frac{N!}{(N-n)!} \left[\prod_{i=1}^{n} f(x_i; \hat{\lambda}, \hat{\alpha}) \right] \left[1 - F(x_i; \hat{\lambda}, \hat{\alpha}) \right]^{N-n}$$

Approach directly extendable to 3 parameter Weibull distribution.

Single tooth bending fatigue comparison— *Ferrium* C64 vs. X53

- Testing performed under Army SBIR contract
- Test gears manufactured and processed via typical aerospace gear processing methods
 - Vacuum carburization and heat treatment
 - Shot peening
 - Ground surfaces (low surface roughness)
- "50% failure stress" (analysis by PSU-GRI)
 - 182.0 KSI for X53
 - 218.9 KSI for C64
 - C64 exhibits ~20% higher performance over X53

C64's superior single tooth bending fatigue performance enables higher gearbox power density and better durability

Single tooth bending fatigue comparison— *Ferrium* C64—HIP vs. un-HIP

SN021-T2: C64 HIPped

- Bending stress—209.3 ksi
- Cycles to failure—82,214
- Initiation site—surface

Extensions and next steps

Better address the effect of surface roughness through equivalent fatigue life reduction factors.

Steel

Research

Group

Fe

Account for loading conditions and surface-volume effects through a weakest link approach. The probability of finding a life limiting defect scales with volume subject to maximum stress.

Number of cycles to failure $N_{\rm f}$

$$P_{\rm F}[\sigma_{\rm eq}, V] = 1 - \exp\left[-\frac{V}{V_0 \sigma_{\rm u}^m} \sigma_{\rm max}^m H_{\rm m}\right]$$

Ferrium C64—TMP & HCP Steel Research Group Mtg., Evanston, IL 25 March 2014 INNOVATIONS LLC Materials By Design®

Conclusions

- Ferrium C64 (and C61) are <u>the</u> next-generation gear steels
- Fatigue nucleation consumes the majority of fatigue life
- Ability to model statistical microstructures and their impact
 on fatigue life
- Ability to model and optimize specialized processing steps, and predict their quantitative impact on fatigue life
- HIP has a significant impact on improving minimum fatigue life

