Computational design of high-strength, SCC-resistant aluminum alloys for aerospace applications

QUESTER® INNOVATIONS LLC

Agenda

- Background Materials Design
- Application and Problem Definition
- A computational approach to high-strength SCC resistant Al design (*Alurium™* HSCR)
- *Alurium[™]* HSCR alloy properties

QuesTek's ICME approach to design high-strength, SCC-resistant aluminum

Develop and apply Integrated Computational Materials Engineering (ICME) design models to design a high-strength, SCC-resistant aerospace aluminum alloy

Integrated:

 Systems-based approach that considers all aspects of corrosion resistance, relevant microstructure, and processing steps

Computational:

- Mechanistic processing-structure and structure-property models that can be used in alloy design
- Thermodynamic models

Materials:

High-strength aluminum

Engineering

• Solving specific problems that are relevant to aerospace applications

QuesTek's ICME approach to design high-strength, SCC-resistant aluminum

Material Design (Structure) Tools

- Multicomponent Thermodynamics
 - Equilibrium and meta-stable phase relations and thermodynamic properties
- Multicomponent Kinetics
 - Multicomponent diffusion

Process-Structure

- Solidification modeling
- Homogenization modeling
- Hot working simulations
- Modeling response to heat treatment (development of 2nd-phase precipitates and constituents

Structure-Property

- Quench sensitivity modeling
- Strength models
- SCC-resistance modeling
- Modeling response to heat treatment (development of 2nd-phase precipitates and constituents)
- 1. Develop multi-scale, mechanistic models to describe the interaction of relevant microstructural features with properties and processing steps
- 2. Integrate the models into a consistent software platform for computational alloy design
- 3. Apply the models in conjunction with thermodynamic tools and models for processing and relevant aluminum alloy properties to design a high-strength, SCC-resistant aluminum alloy for aerospace applications

APPLICATION AND PROBLEM DEFINITION

Problem Definition – Stress Corrosion Cracking (SCC)

- Light-weight, high-strength Al alloys are widely used for structural components of aircraft and ships
- High-strength AI alloys (such as 7050) are highly susceptible to stress corrosion cracking and general corrosion
 - Repair and maintenance of corroded components a major cost driver
 - Heavy anodized coatings necessary for corrosion protection result in significant fatigue strength debit
- New high-strength AI alloys are needed with microstructures optimized for SCC resistance
 - Allows for the reduction or elimination of heavy anodized coatings, reduced fatigue debit and greater structural integrity

fatigue life of 7075-T6

Computational design of high-strength SCC-resistant aluminum alloys for aerospace applications

SRG 2014

Application of Interest – Aircraft Wing Structures

Schematic of an aircraft wing structure

SCC failure in 7xxx alloy aircraft structure

Aircraft wing structural components

- Currently made out of high-strength aluminum (such as 7050) and titanium
- Uncoated high-strength AI alloys are susceptible to various forms of localized corrosion in chloride environments, such as Stress Corrosion Cracking (SCC), pitting, crevice, intergranular corrosion, and exfoliation corrosion

Alloy Design

Critical Design Factors include:

- 1. Tensile Strength
 - Optimize strengthening precipitate fractions within 7xxx design space
 - Minimize quench sensitivity
- 2. SCC resistance and toughness
 - Grain boundary chemistry
 - Refinement/elimination of grain boundary particles
 - Minimize OCP difference between matrix and precipitate phases
 - Optimal grain pinning inhibit recrystallization
- 3. Fatigue
 - Maximize general corrosion resistance to minimize need for coating (reduced coating thickness)
- 4. Manufacturability
 - Thermal processing windows (homogenization, solution treatment)
 - Conventional alloying additions (cost)

Alloy Design - Stress Corrosion Cracking

Grain-boundary segregation

- Certain alloying additions embrittle grain boundaries, others promote cohesion
- DFT ab-initio calculations inform grain boundary segregation energy and embrittling potency of various alloying elements
- Design consideration Accurate SCC lifetime predictions based on thermodynamic and DFT calculations of grain boundary character

Alloy Design - Stress Corrosion Cracking

- Corrosion potential difference between matrix and precipitates a major driver of pitting, SCC
 - Corrosion potential of different phases predicted as a function of chemistry, integrated into computational design
 - Design consideration Minimize potential difference between phases to minimize anodic dissolution mechanism of SCC

Effect of chemistry on η corrosion potential

Alloy Design – Quench Sensitivity

- PrecipiCalc extension to predict precipitation during cooling from solution treatment in 7xxx series Al
- Combine with strength models to predict critical cooling rate to avoid strength loss due to quench sensitivity
- Integrated with thermodynamic/mobility databases to predict quench sensitivity as a function of composition

Isothermal TTT curve predictions of 1% strength loss in various 7xxx series alloys and two QuesTek concept alloys

Alloy Design

- Thermodynamic calculations inform phase stability as a function of composition for tailored microstructures and control of processing windows
- Solidification and homogenization modeling to identify optimal processing conditions

Alloy Production

JUESTEK

INNOVATIONS LLC

Materials By Design®

- Full-scale production of *Alurium* HSCR
 - Melting at Universal Alloy Corp, Anaheim, CA at 2000 lb scale
 - Homogenization, extrusion to multiple product forms following production path relevant to aircraft structural components
 - Solution treated and aged to T6, T7x conditions
 - Detailed characterization in progress

Characterization – Tensile testing

Improved strength and ductility over incumbent 7xxx alloys in equivalent temper condition

Data development in a range of temper conditions in progress

Computational design of high-strength SCC-resistant aluminum alloys for aerospace applications

SRG 2014

Characterization – Strength vs SCC resistance

Alurium HSCR alloy achieves a combination of strength and SCC resistance that is significantly better than incumbent aluminum alloys

Data development on various heat treatment conditions in progress

- Complete Tensile testing, SCC threshold stress testing (ASTM G47)
- In process Additional G47 testing, fracture toughness (K_{IC}, K_{ISCC}), fatigue crack growth, axial fatigue, ASTM B117 salt fog and exfoliation corrosion testing, coating evaluations

Summary

- QuesTek's computationally designed Alurium HSCR alloy achieves a combination of strength and SCC resistance not achieved by commercial alloys, including:
 - <u>15-25% higher strength than 7050-T74 in the longitudinal</u> <u>direction</u>
 - <u>G47 threshold stress > 75% of longitudinal yield strength</u> in T73 condition

Acknowledgements and References

 Alloy development funded by Office of Secretary of Defense (OSD) SBIR contracts N00014-09-M-0400 (Phase I) and N00014-11-C-0080 (Phase II)

References:

- 1. Q. Meng and G.S. Frankel, *Journal of the Electrochemical Soc.*, vol. 151, 2004, pp. B271-B283.
- 2. N. Birbilis and R.G. Buchheit, *Journal of the Electrochemical Soc.*, vol. 152, 2005, pp. B140-B151.
- 3. E. Cirik and K. Genel, Surface and Coatings Technology, vol. 202, 2008, pp. 5190-5201.
- 4. W. Gruhl, Zeitschrift fur Metallkunde, vol. 75 (11) 1984, pp. 819-826.
- 5. Shengjun Dennis Zhang, Effect of Impurity Segregation on Grain Boundary Cohesion in AI Steel Research Group, Annual Meeting 2009.

