Blastalloy TRIP-180

Nicholas J. Wengrenovich Dr. G. B. Olson

SRG 2014 March 25, 2014

M^cCormick

Northwestern Engineering

Outline

- Background
- TRIP-180 Design
- Performance in Shear
- Design and Modeling
- LEAP Analysis
- Future Work

Motivation

- Increase in terrorist activities abroad and domestically
 - USS Cole
 - September 11, 2001
 - Madrid Commuter Train Bombings
 - Boston Marathon Bombs
- Need for higher performance materials to resist explosions

Blast/Fragment Protection Overview

Optimizing Performance using TRIP

- **TR**ansformation Induced Plasticity
- Martensitic transformation is exploited to boost mechanical properties
- Austenite stabilized at room temperature by addition of:
 - Nickel
 - Chromium

Criterion for necking instability:

Quantifying Austenite Stability

- The M_s^σ temperature is defined as the maximum temperature at which an elastic stress causes martensitic transformation
- Transition from stressassisted transformation to strain-induced transformation
- Stability given by the Olson-Cohen relation:

$$\begin{split} \Delta G_{tot} &= \Delta G_{ch} + \Delta G_{\sigma} \\ \Delta G_{crit} &= -G_n - W^f_{sol} \\ \Delta G_{ch} + W^{sol}_f &= -G_n - \Delta G_{\sigma} \\ \text{when } \sigma &= \sigma_y \text{ and } T = M^{\sigma}_s \end{split}$$

OLSON, G. B., "Mechanically-induced phase transformations in alloys," *Encyclopedia of Materials Science and Engineering*, pp. 2929–2932, 1986. FEINBERG, Z. D., *Design and Optimization of an Austenitic TRIP Steel for Blast and Fragment Protection*. PhD thesis, Northwestern University, 2012.

TRIP-180 Design: New Objectives

Primary Objectives	Secondary Objectives			
Uniform Tensile Ductility:	Nonmagnetic:			
$\varepsilon_u > 30\%$	$T_{curie} < 0^{\circ} \mathrm{C}$			
Yield Strength:	Weldable			
120 ksi				
Optimized austenite stability:	Correction Desistant			
$M^{\sigma}_{s}(sh)$	Corrosion Resistant			
Dynamic shear instability resistance:	Hydrogen Resistant:			
maximize γ_i^a	$K_{ISCC}/K_{IC} > 0.5$			
Sufficient fracture toughness:	Estima Creatine Desistant			
$K_{IC} \ge 90 \text{ ksi/in}^{0.5}$	Fatigue Cracking Resistant			
	Limited Coat			
	Linnied Cost			
	γ' Phase Fraction:			
	> 0.10			

7

Systems Design Chart

8

η Cellular Precipitation

- Cellular reaction causes a decrease in ductility
- Cellular reaction requires precipitation and concurrent boundary migration

Eliminating the Cellular Precipitation

- Two-Step Temper
 - Demonstrated limited improvement in fracture ductility
- Warm Working
 - Introduces dislocations
 - Increases strength
 - Provides heterogeneous nucleation sites for γ ' resisting η cellular reaction
 - Avoids η formation
 - Inhibits intergranular fracture
 - Increases fracture ductility
 - TRIP-120 warm worked at 450°C to 23% and 36% reductions of area

750°C 10hr

TRIP-180 WW 36% 700C, 1hr

Fragment Penetration: Shear Localization

- Failure through plastic shear instability and flow localization
- Plugging mode of failure
- Causes submicron microvoid nucleation
- Creates instability where deformation is localized and failure occurs prematurely

BACKMAN, M. E., AND GOLDSMITH, W., "The mechanics of penetration of projectiles into targets," *International Journal of Engineering Science*, vol. 16, no. 1, pp. 1–99, 1978. VERNEREY, F. J. *et al.*, "The 3-D computational modeling of shear-dominated ductile failure in steel," *JOM*, vol. 58, pp. 45–51, Dec. 2006.

Quasi-Static Shear: Test Setup

- Thin walled Kolsky specimens
 - Uniform shear throughout gauge section
- Performed at Illinois Institute of Technology
- Analyze data from previous tests
- Perform new round of testing correcting buckling failure

Quasi-Static Shear: Results

- Remade grips to be concentric
- Inserted hardened drive shaft through center of sample
- Failure in pure shear

Tempering Time	15 (min)	50 (min)	2.5	5.25	5.25	6.25	hr
M₅ ^σ (sh)	-96	-38	-14	5	5	24	С
Shear Yield Stress (τ _v)	79.3	78.6	83.8	82.5	92.4	84.3	ksi
Shear Instability Strain (γ _{in})	2.96	1.94	0.91	0.93	1.01	0.79	in/in
Plastic Strain ($\gamma_p = \gamma_{ip} - \gamma_v$)	2.75	1.93	0.85	0.90	0.82	0.74	in/in
Martensite Fraction (f)	0.528	0.637	0.487	0.686	0.639	0.655	
Transformation Rate Parameter (f/γ_p)	0.192	0.330	0.575	0.760	0.778	0.889	

Quasi-Static Shear: Performance

- Longer tempering
 - More unstable
 - More transformation per strain

• Ultimate plastic strain times strength is a measure of penetration resistance

Quasi-Static Shear: Calibrating Stability

- Peak yield strength at $M_s^{\sigma}(sh)=5^{\circ}C$
- Recalibrate M_s^{σ} model $M_s^{\sigma}(sh)=22^{\circ}C$

Dynamic Shear HAT Type Tests Stored Energy Split-Hopkinson Bar

Modeling: Strength

- γ ': L1₂ structure, Ni₃(Ti,Al)
- Ham strengthening model

$$\Delta \tau = \frac{\gamma_0}{2b} \left[\left(\frac{8\gamma_0 r_s f}{\pi G b^2} \right)^{\frac{1}{2}} - f \right]$$

$$\Delta \sigma = M \Delta \tau$$

- Warm Working $\Delta \sigma_{\perp} = C \epsilon^n$
- Models determine required Al and Ti content

CHIOU, S. T., AND LEE, W. S., "Plastic deformation and fracture response of 304 stainless steel subjected to dynamic shear loading," *Mat Sci and Tech*, vol. 19, pp. 1261–1265, Sept. 2003. KOBAYASHI, H., AND DODD, B., "A numerical analysis for the formation of adiabatic shear bands including void nucleation and growth," *Int jour of imp eng*, vol. 8, no. 1, pp. 1–13, 1989. RANC, N., *et al.*, "Temperature field measurement in titanium alloy during high strain rate loading - Adiabatic shear bands phenomenon," *Mechanics of Materials*, vol. 40, pp. 255–270, Apr. 2008. SADHUKHAN, P., *Computational Design and Analysis of High Strength Austenitic TRIP Steels for Blast Protection Applications*. PhD thesis, Northwestern University, 2008.

Modeling: M_s^o Temperature

Computational Design: Eliminating Warm Working

 Thermodynamically and kinetically favoring γ' over η

LEAP Precipitate Analysis

Time at 700C	15 min	1 hr	5 hr	8 hr	16 hr
Radius [nm]	2.206	3.196	6.509	6.726	7.446
Phase Fraction	0.034	0.099	0.111	0.003	0.116
Num Density [#/m³]	1.207	0.728	0.359	0.268	0.161

45% Ni, Ti, Al isoconcentration surface

Matrix Composition Evolution

Future Work

- Perform higher accuracy composition analysis using LEAP
- Refine existing models and software package input to match experimental evaluation
- Perform calibration on Split-Hopkinson Bar
- Develop and execute test plan for dynamic shear HAT type tests

M^cCormick

Northwestern Engineering

Thank You!

Any Questions?

