A COMPUTATIONAL APPROACH FOR DESIGNING TRIP STEELs STUDYING

Shengyen Li Shengyen.li@nist.gov June 2, 2014

Alloy Design

Experimental Results - Fe-0.32C-1.42Mn-1.56Si

Outline

- Motivations
- CALPHAD-based Models
- Mechanical Models
 - Swift Model
 - Irreversible Thermodynamics
- Genetic Algorithms
- Artificial Neural Network
- Conclusion

The Properties of TRIP Steel

Why TRIP Steel

- Transformation Induced Plasticity
- Martensitic transformation during plastic deformation contributes to overall ductility

How to make TRIP steels

- Select chemical composition properly
- Apply **two-step** heat treatment to manage the carbon content in austenite

Target

• Maximize **TRIP effect** of the **low alloying addition** TRIP steel

Кеу

- Stabilize austenite against the martensitic transformation during heat treatment
- Suppress the formation of cementite

Two-Step Heat Treatment

Two-step heat treatment: (1) inter-critical annealing (IA) (2)-(3) bainite isothermal transformation (BIT) (3)-(4) final cooling to room temperature

Zhu, Acta Mat., 2012

Two-Step Heat Treatment

Two-step heat treatment: (1) inter-critical annealing (IA)

```
Li, Acta Mat., 2012
Li, Acta Mat., 2013
```


Two-step heat treatment: (1) inter-critical annealing (IA) (2)-(3) bainite isothermal transformation (BIT) (3)-(4) final cooling to room temperature

Li, Acta Mat., 2012 Li, Acta Mat., 2013

Displacive Bainitic Transformation

- The Gibbs free energies of bainitic ferrite and austenite are equal at T_0 .
- 400 J/mole of the strain energy is considered for bainitic transformation as T_0' .
- The non-homogeneous C-distribution sustains the bainitic transformation.
- The curve is fitting based on database TCFE6 V6.2
- The empirical data is obtained from: Chang et al., Met. Mat. Tran. A, 1999 and Zhao et al., J. Mat. Sci., 2001

Heterogeneous Carbon Distribution

"During the growth some carbon diffuses out of the ferrite grains into the surrounding austenite matrix. The higher the temperature of formation, the freer the ferrite is of supersaturated carbon."

– Zener, 1912

Li, Acta Mat., 2013

Heterogeneous Carbon Distribution (1)

Heterogeneous Carbon Distribution (2)

DC >> df

DC << df

Heterogeneous Carbon Distribution (3)

Caballero et al., 2011

Two-Step Heat Treatment

Two-step heat treatment: (1) inter-critical annealing (IA) (2)-(3) bainite isothermal transformation (BIT) (3)-(4) final cooling to room temperature

```
Li, Acta Mat., 2012
Li, Acta Mat., 2013
```

Mechanical Properties

Swift Model

Jacques et al. Acta Mat., 2007

$$\sigma_i = K_i \big(1 + \varepsilon_{0,i} \varepsilon \big)^{n_i}$$

$$\sigma = \sum_{i} \sigma_i V f_i$$

$$\sigma = \sigma_A + (\sigma_B - \sigma_A) \frac{w_C^{\gamma} - 1.25}{0.25}$$

Composition and micro-structure in tensile tests

	w _c	W _{Mn}		w _{Si}	
	0.29 1.42		1.41		
	Vf _{Fer}	Vf _{Bai}	Vf _{Aus}	Vf _{Mar}	w_C^{γ}
Α	55	28	17	0	1.25
В	55	33	12	0	1.5

	Phase	<i>K_i</i> , MPa	E _{0,i}	n_i
A	Austenite	720	62	0.3
	BCC	475	55	0.27
	Martensite	2000	800	0.005
В	Austenite	1130	80	0.2
	BCC	720	50	0.175
	Martensite	2000	800	0.005

Optimum Heat Treatment for Fe-0.32C-1.42Mn-1.56Si

T _{IA}	T _{BIT}	
943 - 1142	350 - 943	

The temperature domains (Kelvin) for optimizing the heat treatment for **Fe-0.32C-1.42Mn-1.56Si**

Vf(Fer)

Vf(Mar)

800

(2) Strength, MPa

2

Vf(Fer)

Vf(Aus)

Vf(Bai)

T_{BIT} , Kelvin T_{IA} , Kelvin

(2) Strength, MPa

(3) WTN, MPa%

In T_0' calculations, for most of the microstructures the predicted retained austenite is less than 5%. Therefore, these diagrams include all the predicted microstructures.

Optimum Heat Treatment for Maximizing Toughness

Experiments

Alloy Design Process

Genetic Algorithms - Schema

Optimum Composition and Heat Treatment

Composition, wt%; Temperature, Kelvin						
w _c	w _{Mn} w _{Si}					
0.1 - 0.5	0.5 - 2.5		0.8 - 1.5			
T _{IA}		T _{BIT}				
943 - 1142		3	50 - 943			

- 1. 6 bits memory for each variable
- 2. Vf_{Aus} > 5%
- 3. Total alloying addition is less than 4 wt%
- 4. 10 individuals in one generation, 1,000 generations
- 5. Full equilibrium after IA treatment is considered
- 6. T_0 and para $\gamma \theta$ concepts are utilized

The Predicted Fitness as Function of Mechanical Properties

Chemical Composition vs Mechanical Properties

The Search in 6 Components, 2 Temperatures Domain

w _c	W _{Mn}	w _{Si}	w _{Al}
0.1 - 0.5	0.5 - 2.5	0.8 - 1.5	0.0 - 2.0
W _{Cr}	w _{Ni}	T _{IA}	T _{BIT}
0.0 - 1.33	0.0 - 2.0	943 - 1142	350 - 943

Composition, wt%; Temperature, Kelvin

- 1. 6 bits memory for each variable
- 2. Vf_{Aus} > 5%
- 3. Total alloying addition is less than 4 wt%
- 4. 10 individuals in one generation, 10,000 generations
- 5. Full equilibrium after IA treatment is considered
- 6. T_0 and para $\gamma \theta$ concepts are utilized

Predicted Fitness as Function of Mechanical Properties

The predicted mechanical properties of Fe-C-Mn-Si-Al-Cr-Ni and Fe-C-Mn-Si alloys

Summary

Plastic Deformation Model

During the isothermal plastic deformation, the energy dissipation, dE can be attributed to (1) the exchange of the energy with the environment, dQ; (2) energy consumption by dislocation variation, dW_E

$$dE = TdS = \frac{Cb}{l}d\tau = dQ + dW_E$$

Plastic Deformation Model – cont. 1

• By energy conservation, dQ can be calculated

$$dQ = dU - dW_M$$

 Because of the dislocation: (1) Generation, dW_{ge}; (2) Glide, dW_{gl}; (3) Annihilation, dW_{an}

$$dW_E = W_{ge} + W_{gl} + W_{an}$$

The energy dissipation can be estimated as:

$$dE = \frac{1}{2}\mu b^2 d\rho_{in}^+ + \tau b l d\rho_{in}^+ + \frac{1}{2}\mu b^2 d\rho_{in}^- + \frac{1}{2}\mu b^2 d\rho_{in} - \tau_{in} d\varepsilon$$

To estimate the shear stress (τ), several mechanisms are taken into account:

$$\tau = \tau_0 + \tau_s + \tau_{H-P} + \sqrt{\tau_{in}^2 + \tau_p^2}$$

 τ_0 : Peierls force [Irvine1969; Varin1988; Zhao 2007]

 τ_s : solid-solution strengthening [Irvine1969; Varin1988; Zhao 2007]

 τ_{H-P} : Hall-Petch effect [Irvine1969; Varin1988; Zhao 2007]

 τ_{in} : dislocation strengthening inside the grain

 τ_p : precipitation strengthening

This energy dissipation is also related to (1) the hardness parameter (σ^*), (2) flow stress (τ), and (3) strain rate ($\dot{\gamma}$). It is proposed:

$$TdS = \frac{Cb}{l}d\tau$$
$$= \frac{1}{2}\mu b^2 d\rho_{in}^+ + \tau bld\rho_{in}^+ + \frac{1}{2}\mu b^2 d\rho_{in}^- + \frac{1}{2}\mu b^2 d\rho_{in} - \tau_{in}d\varepsilon$$

$$d\rho_{in} = d\rho_{in}^+ - d\rho_{in}^-$$

$$d\rho_{in}^{-} = \frac{\nu_0}{\dot{\gamma}} exp\left(-\frac{\Delta G}{kT}\right)\rho_{in}d\gamma$$

Stress-Strain Curves of Steel Alloys

Ferrite El Galindo-Nava et al., Mat. Sci. Eng. A 2012

Ferrite + Martensite PEJ Rivera et al., Mat. Sci. Tech. 2012

Micro-Structure & Plastic Deformation

Bainite Sub-Unit Size

0.2

0.4

0.6

х

- **1. Chemical Driving Force**
- 2. Austenite Yield Strength
- 3. Temperature

0.8

Mechanical Response of Bainite

Garcia-Mateo et al., 2011

Micro-Structure & Plastic Deformation

Parameters for Olson-Cohen Model

Olson et al., 1972, 1975

 $Vf_{\alpha'} = 1 - exp\left[-\beta\left(1 - exp(-\alpha\varepsilon)\right)^n\right]$

Jacques et al., Phil. Mag. A, 2001

Composition	O-C Param.				
	α=20, β=0.94				
Fe-0.13C-1.42Mn-1.50Si	α=26, β=0.94				
	α=20, β=0.70				
	-				
	α=57, β=1.41				
Fe-0.16C-1.30Mn-0.38Si	α=30, β=1.88				
	α=49, β=2.08				
	-				
$ \tau_{\rm YS} = \tau_0 + \kappa D^{-\frac{1}{2}} $					
	Composition Fe-0.13C-1.42Mn-1.50Si Fe-0.16C-1.30Mn-0.38Si 0000 000 000 000 0000 0000 0000 0000				

$$Vf_{\alpha'} = 1 - exp\left[-\beta\left(1 - exp(-\alpha\varepsilon)\right)^n\right]$$

Jacques et al., Philosophical Magazine A, 2001

Strain Rate = $2 \text{ mm/min} = 6.67\text{E}-4 \text{ s}^{-1}$

Composition	Т _{віт} , К	∆G, J/mol	O-C Param.
Fe-0.13C-1.42Mn-	683	-1785	α=20, β=0.94
1.50Si	633	-2239	α=26, β=0.94
	683	-1860	α=20, β=0.70
Fe-0.16C-1.30Mn-	-	-	-
0.38Si	643	-2216	α=57, β=1.41
	643	-2216	α=30, β=1.88
	643	-2216	α=49, β=2.08
	643	-2216	-

The Optimum Conditions for TRIP Steels

	С	Mn	Si	T _{IA}	T _{BIT}
Max	0.5	3.0	3.0	950	800
min	0.0	0.0	0.0	1100	500
MSize	2 ⁵			2	7

- Total alloying addition is less than 4 wt%
- 10 individuals in one generation, 1,000 generations
- 3. Full equilibrium after IA treatment is considered
- 4. T_0 and para $\gamma \theta$ concepts are utilized

Phase Constituent and Performance

Chemical Composition and Performance

The Optimum Conditions

To achieve 15%-1600MPa, the recommended conditions are (wt%; K):

С	Mn	Si	T _{IA}	T _{BIT}
0.24	0.48	2.22	1051	601

Conclusion

Selected References

- 1. S Li et al., Thermodynamic analysis of two-stage heat treatment in TRIP steels
- 2. S Li et al., Development of a Kinetic Model for Bainitic Isothermal Transformation in Transformation-Induced Plasticity Steels
- 3. H. Bhadeshia, Bainite in Steels.
- 4. Caballero et al., Design of Advanced Bainitic Steels by Optimisation of TTT Diagrams and TO Curves
- 5. Xu et al., Genetic alloy design based on thermodynamics and kinetics
- 6. Matsumura et al., Mechanical properties and retained austenite in intercritically heattreated bainite-transformed steel and their variation with Si and Mn additions
- 7. De Cooman, Structure–properties relationship in TRIPsteels containing carbide-free bainite
- 8. Fan et al., A Review of the Physical Metallurgy related to the Hot Press Forming of Advanced High Strength Steel