Field Method of Simulation of Phase Transformations in Materials

Alex Umantsev Fayetteville State University, Fayetteville, NC

What do we need to account for?

Multi-phase states: thermodynamic systems may have multiple stable phase 'coexisting' at the same conditions.

Heterogeneous states: phase transformations may go along very complicated paths.

Dynamic structures: rate of transformation can make a difference for the final structure and properties

Nucleation: phase transformations are initiated through the process of overcoming of some kind of a potential barrier.

Pillar 1: Order Parameter: Symmetries of the System

Order-disorder transformation in β -brass (Cu-Zn alloy)

Pillar 2: Free Energy $g(T,\eta) = g_0(T) + \frac{1}{2} W \eta^2 + \frac{1}{3} (\Delta \mu) \eta^3 + \frac{1}{4} \eta^4 \longleftarrow$ Landau potential 0.04 stable phase: 'crystal' 0.03 transition state metastable phase: 'liquid' free energy g 0.02 W—potential barrier metastable stable phase phase W energy scale 0.01 $\Delta \mu$ 0 $\Delta\mu$ -chemical potential difference reaction coordinate -0.01 0.8 1.2 0 0.4

order parameter n

 $\Delta \equiv \Delta \mu / W$ -driving force

Pillar 3: Heterogeneous Systems: **Gradient Energy** $G = \int [g(W,\eta) + \frac{1}{2} k (\nabla \eta)^2] dv$ Correlation length: $\xi = \sqrt{\frac{\kappa/W}{1-\Lambda}}$ – interface thickness

Length

scale:

Interfacial energy: $\sigma = \sqrt{\kappa W}$

Pillar 4: Kinetics

M.I. Mendelev, J. Schmalian, C.Z. Wang, J.R. Morris, and K.M. Ho, *Phys. Rev. B*, **74**, 104206 (2006).

Pillar 5: Internal fluctuations: Langevin force

$$\frac{d\eta}{dt} = -\gamma (\frac{\delta G}{\delta \eta})_{T,P} + \zeta(x,t)$$
$$<\zeta(x,t) >= 0$$
$$<\zeta(x,t) \zeta(x',t') >= \int \delta(x'-x) \,\delta(t'-t)$$
$$\Gamma = 2\gamma k_B T$$

 $\zeta(\mathbf{x}, \mathbf{t})$ —noise: Gaussian, white, additive

One more energy scale: thermal fluctuations-k_BT

Pillar 6: 'Hydrodynamic Modes':

Momentum Flow (Pressure or Stress) Diffusion (Concentration of species) Electromagnetic Field Variation (Waves) Heat Flow (Temperature Variation):

'Thermodynamically consistent heat equation' A. Umantsev and A. Roytburd. <u>Sov. Phys. Solid State</u> **30**(4), 651-655, (1988)

General Heat-Equation \rightarrow

$$O\frac{dT}{dt} = \nabla(\lambda \nabla T) + Q(\mathbf{x},t)$$

Heat Source
$$\rightarrow Q(\mathbf{x},t) = -[(\frac{\partial e}{\partial \eta})_{V,T} - \kappa_E \nabla^2 \eta] \frac{d\eta}{dt}$$

 \uparrow Latent Heat \square

Length ScalesTime scales
$$l_I = \sqrt{\frac{\kappa}{W}}$$
 - interfacial thickness $\tau = \frac{1}{\gamma W}$ $l_C = \frac{CT_E \sigma}{L^2}$ - capillary length $\begin{pmatrix} C \\ T_E \\ U \\ W \\ \kappa \\ \lambda \\ \mu \end{pmatrix}$ $relaxation time$ $l_{\mu} = \frac{\lambda}{\mu L}$ - kinetic length $\kappa^{\kappa}_{\lambda}$ $\kappa_{\mu} = \frac{\lambda C}{(\mu L)^2}$ $l_T = \frac{\lambda}{CV_n}$ - thermal length $\kappa^{\kappa}_{\lambda}$ μ K^{-1} - radius of curvature $dynamic$ $U = \frac{l_C}{l_I} = \frac{CT_E W}{L^2}$ $R = \frac{l_{\mu}}{l_C} = \frac{\lambda}{C\gamma\kappa}$

Truly Multi-Scale Method

Real Material Modeling

Problem A: Convert thermodynamic functions of two or more phases into a continuous Landau-Gibbs Free Energy

Solution 1: LTPT: Symmetry expansion Solution 2: Speculate

Problem B: Find the PFM parameters: $\{W_i, \kappa_i, \gamma_i\}$

<u>Solution 1</u>: Calculate from First Principles <u>Solution 2</u>: Calibrate from experiments or MD/MC simulations

coordination OP

crystallization OP

Measurable Quantities

Interface thickness:
$$l_I \sim \sqrt{\frac{\kappa}{W}}$$

Interface energy:
$$\frac{free\ energy}{unit\ area} \equiv \sigma \sim \sqrt{\kappa W}$$

Kinetic coefficient:
$$\frac{interface \ velocity}{1K \ of \ supercooling} \equiv \mu = \gamma \sqrt{\frac{\kappa}{W}} \frac{L}{T_E}$$

Equilibrium Fluctuations of OP

Non-Equilibrium Fluctuations of OP

$$\langle \left| \widehat{\Delta \eta}_{V}(\mathbf{k}) \right|^{2} \rangle = \frac{k_{B}T}{V \left[\frac{\partial^{2}g}{\partial \eta^{2}}(\overline{\eta}) + \kappa |\mathbf{k}|^{2} \right] }$$

$$\begin{array}{c} \text{Dynamic} \\ \text{Structure} \\ \text{factor} \\ \end{array}$$

$$\begin{array}{c} \text{time} \end{array}$$

Materials Genome

RESEARCH

Database of Interfacial Properties

RESEARCH AFLOW DATAE gh-throughput Calculations for Materials Propertie PUBLICATIONS OPEN POSITIONS

	A	В	C	D	E	F	G	н		JK	L	M	N	0	P	Q	K	S		0	V	VV	X
1 Crystallization database for pure substances.																							
2						estimates																	
3	Quantity	Te	L	C	ρ	λ	σ	μ	δ	B=3σ/(16δ)	Ta=L/C	α=λ/(ρC)	m=Teμσ/(Lp)	X=σ/(Lρ)	/c=TeCo/(ρL^2) [*] /μ=λ/(μρL	.)	Q=L/CTe	=T E=16B/3L	. U=TeCB/(p	L^2]R=/μ/δ	RU	y
4	Units	K	J/kg	J/kg*K	kg/m ³	J/K*m*s	J/m ²	m/s*K	m	J/m ³	K	m ² /s	m ² /s	m	m	m				≈lc/δ			m ³ /Js
5	Elements	;	Ū	, in the second se	Ĭ																		
6	Aluminum	933.52	3.87E+05	5 900.00	2699	210	1.15E-0	1 10	1.00E-09	2.16E+07	4.30E+02	8.65E-05	1.03E-06	1.10E-	10 2.3	9E-10 2.0111E	-08	4.61E-	01 1.10E-0	1 4.48E	-02 20.11	1005 9.02	E-01
7	Aluminum	939.30	3.71E+05	1252.00	2332	0.777	1.02E-0	1 0.65	1.00E-09	1.92E+07	296.33387	2.66127E-07	7.23E-08	1.18355E-	10 3.7515	3E-10 1.3816E	-09	0.31548	37 1.18E-0	0.070341	253 1.3810	356 9.72	E-02
8	Cobalt	1765.15	2.59E+05	5 799.10	8900	25.08	4.00E-0	2 1.88	1.00E-09	7.50E+06	3.24E+02	3.53E-06	5.75E-08	1.73E-	11 9.44	4E-11 5.78E	-09	1.84E-	01 1.73E-0	2 1.77E	-02 5.78E	+00 1.02	E-01
9	Copper	1356.15	2.05E+05	6 493.70	8930	170.5	1.36E-0	1 1.58	1.00E-09	2.55E+07	4.15E+02	3.87E-05	1.59E-07	7.43E-	11 2.4	3E-10 5.90E	-08	3.06E-	01 7.43E-0	2 4.55E	-02 5.90E	:+01 2.68E	+00
10	Helium	35.04	6.60E+04	2975.00	410.3	0.117	1.70E-0	4 0.2	1.00E-09	3.19E+04	2.22E+01	9.59E-08	4.40E-11	6.28E-	12 9.92	2E-12 2.16E	-08	6.33E-	01 6.28E-0	3 1.86E	-03 2.16E	+01 4.02	E-02
11	Hydrogen						8.74E-0	4		#DIV/0!			#DIV/0!	#DIV/0!		#DIV/0)!	#DIV/0	! #DIV/0!	#DIV/0!		#DIV	/0!
12	Nickel	1725.15	2.92E+05	735.00	8900	40.96	4.64E-0	1 0.39	1.00E-09	8.70E+07	3.98E+02	6.26E-06	1.20E-07	1.78E-	10 7.74	4E-10 4.04E	-08	2.30E-	01 1.78E-0	1 1.45E	-01 4.04E	:+01 5.86E	+00
13	Nickel	1728.00	2.64E+05	540.00	8900	90.9	3.70E-0	1 2	5.00E-10	1.39E+08													4.90E+02
14	Lead	600.65	2.30E+04	129.00	10660	34.4	2.99E-0	2 0.28	1.00E-09	5.61E+06	1.78E+02	2.50E-05	2.05E-08	1.22E-	10 4.1	1E-10 5.01E	-07	2.97E-	01 1.22E-0	1 7.70E	-02 5.01E	:+02 3.86E	+01
15	Phosphor	u 317.10	8.47E+04	3310.16	1745	0.1881	8.00E-0	3 0.177	1.00E-09	1.50E+06	25.6	3.26E-08	3.04E-09	5.41E-	11 6.7	0E-10 7.19E	-09	8.07E-	02 5.41E-0	2 1.26E	-01 7.19E	+00 9.03	E-01
16	Silver	1234.15	1.05E+05	5 284.50	10500	204.5	1.11E-0	1 1.65	1.00E-09	2.08E+07	3.67E+02	6.85E-05	2.06E-07	1.01E-	10 3.4	0E-10 1.13E	-07	2.98E-	01 1.01E-0	1 6.37E	-02 1.13E	:+02 7.20E	+00
17										#DIV/0!			#DIV/0!	#DIV/0!		#DIV/0)!	#DIV/0	! #DIV/0!	#DIV/0!		#DIV	/0!
18	Xenon	161.39	1.75E+04	339.68	2963	0.0734	9.43E-0	3'	1.00E-09	1.77E+06	5.15E+01	7.29E-08	0.00E+00	1.82E-	10 5.6	9E-10′ #DIV/0)!	3.19E-	01 1.82E-0	1 1.07E	-01′ #DIV	/0! #DIV	/0!
19													#DIV/0!									0.00E	+00
20	Substand	es																				0.00E	:+00
21	Cyclohex	a 298.61	1.005.04	4000.00	070	0.0000	0.055.0		1.00E-09	0.00E+00	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/	0! #DIV/0	!! 	#DIV/0	! #DIV/0!	#DIV/0!	#DIV	/0! #DIV	/0!
22	Succinoni	t 331.24	4.62E+04	1998.00	970	0.2226	8.95E-0	3 0.2	1.00E-09	1.68E+06	2.31E+01	1.15E-07	1.32E-08	2.00E-	10 2.8	6E-09 2.48E	:-08	6.99E-	02 2.00E-0	1 5.36E	-01 2.48E	:+01 1.33E	:+01
23	vvater	273.15	3.33E+05	4184.00	1000	0.5607	3.19E-0	2	1.00E-09	5.98E+06	7.96E+01	1.34E-07	0.00E+00	9.57E-	11 <u>3.2</u> i	8E-10 #DIV/0	11	2.92E-	01 9.57E-0	0.16E	-02 #DIV	/U! #DIV	/0!
_																							
4	A	B		C	D	E		F	G	H		J	K	L	М	N		0	Р	Q	R	S	T
1	Copper-I	Vickel all	ov svstem	1																			
2			-, -,																				
4		_																			-	•	• •
3	Quantity	Te me	easur Te si	imulat(8T		σ meas	sure(o s	imulate	σ	XsolidCu	psolid	G"solid	g"solid	XliquidCu	pliquid	G"liquid	g"liqui	id	∆XCu	L (C	λ	μ
4	Units	K	K			J/m²	J/n	n²	eV/nm ²	mol. frac.	(atoms/nm	AJ/mol×mol.fr	a J/m ^s ×mol.fra	c. mol. frac. (atoms/nm/	J/mol×mol.fr	a J/m³×	mol.frac.	mol. frac. (J/kg .	J/kg*K	J/K*m*s	m/s*K
5																				, in the second	5		
C	nura Mi		1700	1000		٥	255	0.24	1 02500		1			0					0				
0	pure NI		1/20	1020		U.	200	0.51	1.93500	I U				U					U				
7									()									0				
8				1750 0	.82134			0.287	1.79151	0.05	83.2	2 3.0616E+0	5 4.2313E+10	0.104	77.1	1.5606E+05	5 1.99	87E+10	-0.054				
9									()									0				
10	puro Cu		1356 140	8 10/		٥	177 0	216176	1 3/317	1				1					0				
10	pure ou		1550 142	.0.134		υ.	111 0.	210170	1.343114	• 1									U				

Soldering: InterMetallic Phase Growth

Cu-Plate

←Liquid-state solder Solid-state solder

← Where was the original interface ← between the tin and copper? ←

→ <mark>0</mark>

5um

Gagliano and Fine'00

Onishi and Fujibuchi'75

Experimental results

Lord & Umantsev, J. Appl. Phys. **98**, 063525 (2005) (Centennial Campus, 2004)

. M

PLC

baseline

IMP

Grain Boundary Contribution to Free Energy

1. $f_{ori} = f(\theta)$ —not invariant against rotation of the reference frame

2. $f_{ori} = f(\theta_1, \theta_2, \theta_3, ...)$ —orientation =order parameter

3. $f_{ori} = f(|\nabla \theta|) = s |\nabla \theta| + q |\nabla \theta|^2$ —Kobayashi, Warren, Carter

 $f=\ldots+[1-s(\xi)]f_{liquid}(c)+[s(\xi)-s(\eta)]f_{solid}(c)+s(\eta)f_{intermet}(c)$

Dynamics

$$\frac{\partial \theta}{\partial t} = -\gamma_{\theta(\xi,\eta)} \frac{\delta F}{\delta \theta}$$

Grain-boundary diffusion: Mobility: $M=M(\xi,\eta,|\nabla\theta|)$

Evolution Equations

Crystallization

 $\frac{\partial \xi}{\partial t} = -\gamma_{\xi} \frac{\delta F}{\delta \xi}$

Ordering

Parameters: 3 Diffusion coefficients: solder intermetallic substrate +9 interfacial parameters (interface energies thicknesses, and mobilities)

Diffusion

$$\frac{\partial c}{\partial t} = \nabla [M(\xi,\eta,c)\nabla \frac{\delta F}{\delta c}]$$

$$M = M_{liq} + (M_{sol} - M_{liq})\xi + (M_{int} - M_{sol})\eta$$

Scales: Length=0.25nm Time=0.25µs

Initial Conditions: slab, no nucleation

2D Modeling

Phase Field Simulation of Nucleation at Large Driving Forces

<u>Lifetime</u>: time for a supercritical nucleus to appear in the system. Advantages:1. more reliable theory 2. free-energy landscape

3D as opposed to 2D

Correlation properties of the fluctuations are very different.

Numerical simulations

 Δx , Δt are not just grid parameters. They are physical quantities—the noise correlation length and time.

Supercritical Nucleus

Time Evolution of the System

Free Energy Barrier

10 20 30 40 50 60 70 80 90 100

3D Structure of Supercritical Nucleus

Shape characterization

- 1. Volumetric content
- 2. Eccentricity
- 3. Roughness
- 4. Probability distribution

