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Our Mission is SImple

Add as much
to your work as possible,
iImmediately,
using data
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Keys to Industrial Relevance

UBIQUITY

EASE OF USE

OBVIOUS ROI
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Citrine Platform: Worldwide Deployments
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—— Citrine Informatics

Citrine Is the community cloud for materials
data, predictive models, & post-processing

+ All relevant data in one place, unified from databases,
research groups, papers

+ Predictive Al, physics-based simulations, and post-
processing tools seamlessly integrated with the data

+ Vibrant ecosystem of researchers and developers




All Relevant Data

Citrine Informatics

1/7m+ free data records as pit’s on citrination.com (& AP

ASM and MMPDS are now official data partners, providing
premium data to the platform; 6 free NIST SRD’s & much more

General

Plots

SHOW FILTERS

SAVE COLUMN LAYOUT RESTORE COLUMN LAYOUT HIDE EMPTY COLUMNS

SHOW ALL COLUMNS EXPORT TO CSV

Alloy Properties
Record Name Specification Product form Design tensile ultimate stress | Design tensile yield stress Design ultimate bearing str
View AISI 1025 AMS-T-5066 Tubing 55 ksi 36 ksi 90 ksi
View AISI 1025 AMS 5046 :Sheet, strip, and plate 55 ki 36 ksi 90 ksi
View AISI 1025 AMS 5075 ;Tubing (Seamless) 55 ksi 36 ksi 90 ksi
View AISI 1025 'ASTM A 108 Bar 55 ksi 36 ksi 90 ksi
View AISI 4130 AMS 6345 Sheet, strip, and plate 90 ksi 70 ksi 190 ks
View AISI 4130 'AMS 6360, AMS 6373 Tubing 190 ksi 70 ksi 190 ksi
View AISI 4130 AMS 6374 Tubing 95 ksi 75 ksi 200 ksi
View AISI 4135 | AMS 6365 Tubing 195 ksi 80 ksi 180 ksi
View AISI 4130 |AMS 6361 Tubing 125 ksi 100 ksi 251 ksi
View AISI 4130 ' AMS 6362 Tubing 150 Ksi 135 ksi 285 ki

1to 10 of 303

First = Previous Page 1 of 31| Next




Citrine Informatics

Graphical & AP| (Semantic) Search

Search Citrination

Welcome to Citrination. Use the search fields below to find materials property data. These are data that users have contributed or
Citrine has automatically extracted from literature. Make a contribution.

binary oxide band gap

SEARCH

HIDE ADVANCED SEARCH OPTIONS

Material

Value

eV

DOl

Showing results 1 to 25 of 259 First Next
Chemical formula: TiOg Chemical formula: MoOg Chemical formula: MoOs
Band gap: 3.75 eV Band gap: 3.7 eV Band gap: 3.7 eV
5
Chemical formula: O Ti Chemical formula: Nd2 O3 Chemical formula: TiOo
Band gap: 3.53 eV Band gap: 3.708 eV Band gap: 3.75 eV
e - ]

“Show me binary oxides
with band gap between 3.5
and 4 eV’
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Open Data Matters

JOM
August 2016, Volume 68, Issue 8, pp 2116-2125

Semi-Supervised Approach to Phase Identification
from Combinatorial Sample Diffraction Patterns

Authors Authors and affiliations

Jonathan Kenneth Bunn, Jianjun Hu, Jason R. Hattrick-Simpers[~]

“In the current implementation, SS-AutoPhase (semi-supervised AutoPhase)
was used to phase map 278 diffractograms from a FeGaPd “open-data”
combinatorial thin-film library.[ citation for Citrination]

In this study, the open FeGaPd structural data not only allowed for the
validation of SS-AutoPhase, but also it enabled a new materials discovery
from data produced >10 years ago. By making these data open, the value
of the data to the materials community was increased.”
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Value of Data Scale in Practice

Initial dataset too small ->Larger training set Predictive model drove
for signal via Citrine platform real-world discovery
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The Citrine Predictive Approach

Start with known physical and chemical relationships
(oriors = DFT ground states, CALPHAD simulations, design rules...)

then

fit remaining variance to reality (huge quantities of relevant
measurements) with machine learning
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Platform Machine Learning Capabillities

Citrine’s platform exposes machine learning in 3 ways

ing in Data Gaps Predict Interface Inverse Design

General Processing  Properties Citrine r b - Formula BOHR_MAGNETON CURIE TEMP. SPONTANEOUS MOMENT
Targets )
Chemical formula Name Temper Elongation Brinell hardness Elastic modulus Tensile strength Yield strength
Request New Prediction DESGN
Al 9 Oro 1o Fets 1 Mo 7253 T 9% & 69.GPa 255 WP 241 MPa Effective Bohr magnetons (per f.u)
Algs 95 Mo 09Zno, 3% 2 68 GPa 80 MPa . oo .
Algg 29 Fep.11Mgg Alloy 1050 H18 7% 43 69 GPa 60 MPa 145 MPa =
Algy g3 Crp.35 Fe0.41Mas.14 Mnp 41 Sip.41 Tio.187n0 .24 H22 5 76 70 GPa 245 MP3 186 MPa : Curie temperature (K)
Algz.33 G 23 Feg.61Mny 21 Sio.s2 Alloy 3003 o 3 28 69 GPa 114 MPa 38 MPa. o
Algr.4Cro.1aC Feo.s2Mdn.sMnn.2Sio 31 Zna.24 Alloy 5005 H14 6% 43 69 GPa 59 MPa 152 MPa
Algs,7 Cro,19 Ol 23F€0,62M31.43Si0.4120.24. 7% 58 69 GPa 207 M 179 MPa !
y " Spontaneous magnetic moment
Algs 41 Cug 67 Feo 50 Mg1.62Mno.58 Sio 30 Tio.17 2 TE 4% 150 67 GPa. 470 MPa
Algg.00 Cup.23F€0.61 Mg, 27Mno 81 Sit.75 Zn0.24. Aloy 68 69 GPa 55 MPa 110 MPa ° °
Alga 5 Cig 58May.26Mno 4 Tig hrd 12% 120 70 GPa 436 MPa 350 MPa : A
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Predictive Artificial Intelligence for Materials

Collaboration with Computherm to demonstrate benefits of
CALPHAD data in training Al to predict Al alloy mech properties

Al without CALPHAD Al with CALPHAD
RMSE = 82 MPa RMSE = 61 MPa




Citrine Informatics

Machine Learning on Demand

Paper with valuable data Drag and drop .csv Interactive models

CHEMISTRY OF m UCSB thermoe\ecmc dataset Request New Prediction

MATERIALS

Data-Driven Review of Thermoelectric Materials: Performance and
Resource Considerations

Michael W. Gaultois,*™* Taylor D. Sparks,** Christopher K. H. Borg,* Ram Seshadri**"*
William D. Bonificio,! and David R. Clarke!

CHEMICAL_FORMULA Ba2Augi

CSV is formatted correctly! emperature 300

Crystalinity polycrystaline -

! CHOOSE A FILE... Predictions
Department of Chemistry and Biochemistry, *Materials Research Laboratory, and *Materials Department, University of California,
Santa Barbara, California 93106, United States
ISchool of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, United States
o
ABSTRACT: In this review, we describe the creation of a large database of "“F " T ——@n "o 7 T 7 3
thermoelectric materials prepared by abstracting information from over 100 publications. 12| ° B ucsb_te.csv (ARG DELETE
The database has over 18 000 data points from multiple classes of compounds, whose £ 3
relevant properties have been d at several temp Appropriate visualization — N s - 77 og Resistivity
of the data immediately allows certain insights to be gained with regard to the property g‘ﬂ‘ g

space of plausible thermoelectric materials. Of particular note is that any candidate [ - % 1
material needs to display an electrical resistivity value that is close to 1 mQ cm at 300 K, 5

that is, samples should be significantly more conductive than the Mott minimum metallic " f 10
conductivity. The Herfindahl—Hirschman index, a commonly accepted measure of  '®F 3
market ion, has been calculated from geological data (known elemental 1oz} " coseckcontioon | &
reserves) and geopolitical data (clemental production) for much of the periodic table. A H

5

|
The visualization strategy employed here allows rapid sorting of thermoelectric LR

compositions with respect to important issues of elemental scarcity and supply risk. o SUBMIT

KEYWORDS: th lectrics, de ining, Herfindahl—Hirsch Index, elemental abund,

0 100
Seebeck coefficient
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Dataset Visualization
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Scatterplot of UCSB
thermoelectrics dataset
Gaultois et al., Chem Mater 25 (2013)
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Dataset Visualization

© Mnoxide © ZnO, SrTiO3 O other oxide © clathrate © skutterudite
O half-Heusler © Zintl © chalcogenide © Si-Ge ©
700
Formula: Tlg 92Pbg 9gTe;
600 Electrical resistivity (Q cm): 5.36E-3
Seebeck coefficient (uV/K): 328
400 500 |zr:139
— Temperature: 700 K
e 400 |synthesis ro
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from the paper interactively
Gaultois et al., Chem Mater 25 (2013)
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Dataset Visualization
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Uncertainty Quantification

All Models Have Error Bars Predictions are Distributions

Request New Prediction

® Results: Seebeck coefficient CHEMICAL_FORMULA (Grsiz

Ideal Temperature
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Feature Selection & Importance

Important Features

Magpie feature set
bitbucket.org/wolverton/magpie
doi:10.1038/npjcompumats.2016.28

We are working with the
informatics community to build
a comprehensive library of all
published features

Seebeck coefficient

CHEMICAL_FORMULA_ElectronAffinity_I1

CHEMICAL_FORMULA_NsUnfilled_I1

CHEMICAL_FORMULA_NUnfilled_I1

CHEMICAL_FORMULA_NsValence_I1

CHEMICAL_FORMULA_GSestFCClatent_I1

CHEMICAL_FORMULA_ICSDVolume_lI1

CHEMICAL_FORMULA_Row_I1

CHEMICAL_FORMULA _MiracleRadius_I1

CHEMICAL_FORMULA_GSestBCClatcnt_I1

CHEMICAL_FORMULA_BoilingT_I1

CHEMICAL_FORMULA_GSvolume_pa_|1

CHEMICAL_FORMULA_ShearModulus_I1

Temperature

0.11953138134990215

0.10335721226261824

0.09780109721022519

0.08118081419616913

0.07888443644268245

0.07696848738961315

0.07500187458125034

0.06839587008787573

0.06776567820725884

0.06771500457780066

0.06425279861122248

0.06199032157983999

0.03715502350354161




Citrine Informatics

Model Anything!

NIMS Superconductor Dataset NIMS Melting Point Dataset
(turns out, superconductors = not easy) (melting point = much easier)

® Results: Superconducting Tc
—— Ideal

e 4000

80 T L
7
60 _“ [ [ 3K ) 3000 |I”
140 =)
> (I8 [
40 H 120 ] ':“
. 100 H
I q 1]
y g 80 il
‘e g i
4L L L 60 i 13
40 i ! o

Rt BT ®
20 WhEE Y
tar 1] I ﬁ
Ill.I

® Results: Melting temperature
——— Ideal

100

Predicted
Predicted

N
o
o
o

1000

=20

-40

Superconducting Tc

0 50 100 0 1000 2000 3000 4000

Actual

Actual




Model Anything!

2014,38 ; ; .
http://www.immijournal.com/content/3/1/8 © lntegratmg Mat?nals N
and Manufacturing Innovation
a SpringerOpen Journal
RESEARCH Open Access

Exploration of data science techniques to
predict fatigue strength of steel from
composition and processing parameters

Ankit Agrawal'", Parijat D Deshpande?, Ahmet Cecen3, Gautham P Basavarsu?, Alok N Choudhary’
and Surya R Kalidind®*

*Correspondence:
ankiag@eecsnorthwestem.edu Abstract

Department of Electrical icti
Engioering and Computer Scence, This paper describes the use of data analytics tools for predicting the fatigue strength

Northwestern University, Evanston, of steels. Several physics-based as well as data-driven approaches have been used to
IL, USA arrive at correlations between various properties of alloys and their compositions and
Fullsofauhor nformatons manufacturing process parameters. Data-driven approaches are of significant interest

to materials engineers especially in arriving at extreme value properties such as cyclic
fatigue, where the current state-of-the-art physics based models have severe
limitations. Unfortunately, there is limited amount of documented success in these
efforts. In this paper, we explore the application of different data science techniques,
including feature selection and predictive modeling, to the fatigue properties of steels,
utilizing the data from the National Institute for Material Science (NIMS) public domain
database, and present a systematic end-to-end framework for exploring materials
informatics. Results demonstrate that several advanced data analytics techniques such
as neural networks, decision trees, and multivariate polynomial regression can achieve
significant improvement in the prediction accuracy over previous efforts, with R? values
over 0.97. The results have successfully demonstrated the utility of such data mining
tools for ranking the composition and process parameters in the order of their
potential for predicting fatigue strength of steels, and actually develop predictive
models for the same.

Keywords: Materials informatics; Data mining; Regression analysis;
Processing-property linkages
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Figure 6 Scatter plots. Scatter plots for the 12 modeling techniques. X-axis and Y-axis denote the actual and
predicted fatigue strength (in MPa) respectively. a) Decision Table; b) Instance-based; €) KStar; d) Support
Vector Machines; e) Regression with Transformed Terms; f) RobustFit Regression; g) Linear Regression; h)
Pace Regression; i) Artificial Neural Networks; j) Reduced Error Pruning Trees; k) M5 Model Trees; 1)

Multivariate Polynomial Regression.

Citrine Informatics

Citrine platform creates steel fatigue
model from published dataset
Agrawal et al., IMMI 3 (2014
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Model Anything!

Predictions

Citrine platform trained on o g
HEA phase stability database . -
D Miracle & O Senkov, Acta Mater 2016 ‘ fypes ofphases

=
o

Ex: MoRhRu correctly predicted to be
single-phase SS .

Ingtances

o

two three
Number of phases




Machine Learning-Assisted

NIMS Melting Point Dataset

Predicted

4000

3000

2000

1000

0 1000 2000

Actual

3000

4000

Results: Melting temperature
Ideal

Citrine Informatics

Data Curation

Predicted
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® Results: Melting temperature
Ideal

{ (2,631.333, 926.8574 + 100.4125) [RESVICHV I
1 (o]

Propertie
Show details of ...
Chemical Property
No. Chemic: Data type Property el Source references
1 Csl I Property congruent melting  2660.(76) K Phys. Rev. B: Condens. Matter,1996,53,,556-
temperature, 563,Boehler R., Ross M., Boercker D.B.
s
congruent melting
temperature,
M
congruent melting 2500 K
temperature,
Thu
congruent melting 3500 K
temperature,
Trus
2l 1 Property congruent melting 894 K J. Alloys Compd.,1993,201,,217-221,Qiao Z.,
temperature, Zhuang W., Wu ., WangS., Zhao X.
Tus
3 Gl W Property congruent melting 899 K J. Less-Common Met.,1989,149,,95-99,Chen
temperature, X.Z., Wang S.H., Jiang S.B.
Trus
4 Csl 1 Property congruent melting 3500 K Phys. Rev. B: Condens. Matter,1985,31,,1457-
temperature, 1462,Radousky H.B., Ross M., Mitchell A.C.,
- Nellis W.J.

Csl

Predicted: 927 K
Training: 2631.333 K

1 atm value: 831 K




Vibrant Ecosystem

Citrine has a new developers’ program to enable researchers to
publish code that integrates on Citrination

Citrine Backto Citrination

Run About Example

Input:

C o M B O B ayes i a n File (.csv): (?)
0 pti m izati o n Pa c ka g e Ml eese Choose a CSV from your computer. The last column is treated as a

, Number of candidates: ?) response. All preceding columns are treated as inputs.
K Tsuda, Univ Tokyo / NIMS 1
Is ID column present as first column? (?)
Run Combo
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11

Powered by Citrine” Launch

Anchor set of university labs deploying Citrine lab-wide

We are training these users on our API, dataset templates,

machine learning templates, PIF data format, and pdf->dataset
extraction tools
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Data-Driven Materials Community

Data-Driven Materials Science & Chemistry Newsletter
(citrine.io/ddms-newsletter) has >200 weekly readers

“Your new research highlights are great. There's nothing else out
there like this for materials informatics ... Particularly when there's a
ton of stuff to do in a aay, the 1-2 paragraphs plus a figure is a
perfect length to start off the day with a hit of research.” —a reader
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Citrine Business Model

Free platform (data & apps) available to everyone

Users of the free platform allow Citrine’s algorithms to learn
from their data (Gmail model=monetizing data, not users)

Industrial users pay for data privacy, while tapping the insights
of the free platform

Some premium platform content (e.g., commercial databases)




—— Citrine Informatics

Sustainability

Citrine’s team of 15+ spends $mm/year to create a scalable, secure,
extensible, supported materials data infrastructure for thousands of
users—this is not fast, easy, cheap, or temporary

Things we build, track, or have:

* Uptime

* Performance

 Feature velocity

* Security

* Support

 Quality assurance

» Decades of enterprise s/w engineering experience
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Citrine Does Not Lock Users In

o
Our data structure (pif) is

ChemicalSystem

completely open-source JSON: |

ChemicalSystem

I l < ; > common DeSCI’lptlon
O u C a X O rt a O O l I r at a System A ChemicalSystem is a specialization of the more generic System type. Chemical systems add information about chemical composition
to a system.
pypif

out of Citrine and back it up

Citrine Informatics

Field name Value type Description
e S e W e re uid String Permanent ID associated with the chemical system.
chemicalFormula String Chemical formula of the system.
. Array of Composition The elements in the chemical system and their relative atomic and weight
composition N
objects percentages.
names Array of strings Common names of the chemical system.
ids Array of Id objects IDs (named labels) of the chemical system.
L} source Source object Source/producer/manufacturer of the chemical system.
e W a I I t l I S e rS l I S I I I l | S quantity Quantity object Quantity of the chemical system.
properties Array of Property objects Measured or observed properties.
. Array of ProcessStep . . .
preparation . Process steps carried out in preparing the chemical system.
objects
, subSystems Array of System objects Subsystems that the chemical system is composed of.

not because their data are citrine.io/pif
trapped also see MRS Bull article on pif)
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Let’'s Create Community Infrastructure

Lots of groups working on roughly the same core web
platform features and data plumbing

How can Citrine make it easier for you to build on top of or
iIntegrate with our core platform capabilities?

“Let Citrine handle the IT so you can focus on science”




