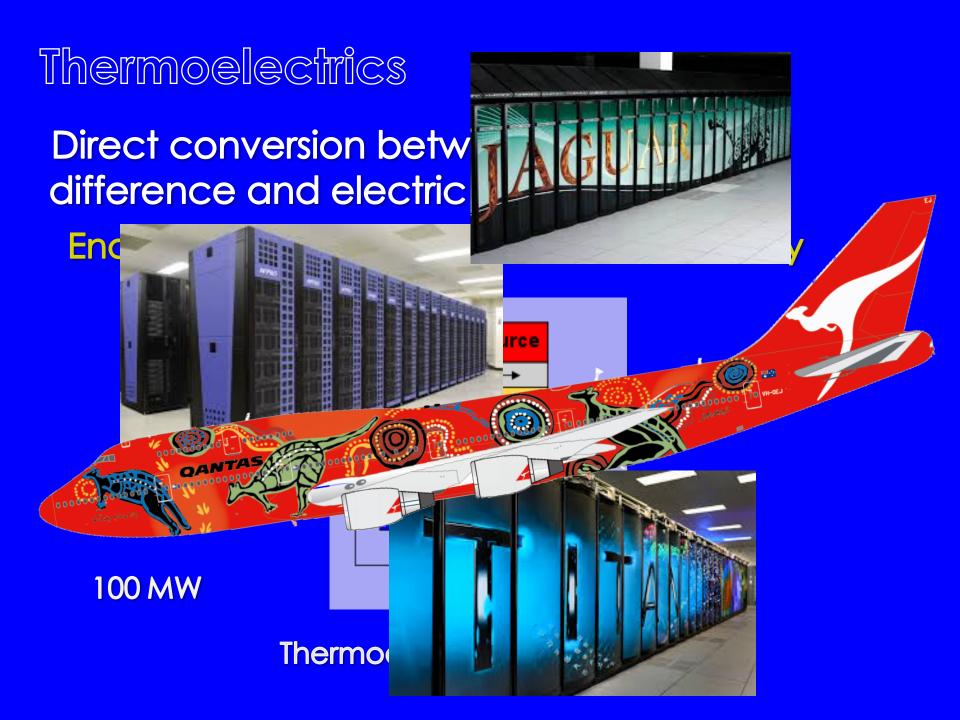

Data-driven materials research: The NOMAD Laboratory



Materials data & their structure

Level	Properties	Methods	Size	
١	Atomic positions and nuclear charges, properties of free atoms, symmetry, temperature, pressure			
II	The amount of materials data produced on workstations, compute clusters, and			
III	supercomputers is growing exponentially. Most of it is thrown away			
IV	Efficiency of solar cell, thermoelectric figure of merit, turn-over frequency of catalyst, etc. as a function of temperature and pressure	Modeling, output derived from levels I-III	10 kB - 1 MB	

Waste-heat recovery

What makes a good thermoelectric? Figure of merit ZT with

$$Z = \frac{\sigma S^2}{\kappa_{el}^0 + \kappa_{ph}}$$

- S Seebeck coefficient
- σ electronic conductivity
- κ thermal conductivity

Current values: Z = 0.6 - 1.5

Profitable applications: Z > 2

Problem:

High electrical conductivity σ and low thermal conductivity κ is required at the same time

Materials data & their structure

Level	Properties	Methods	Size
1	Atomic positions and nuclear charges, properties of free atoms, symmetry, temperature, pressure	Input: definition of material gene	10 kB - 1 MB
II	Total energy, electron density, potential, wavefunctions, atomic forces, optimized geometry, elastic constants, etc.	Density-functional theory (DFT) and <i>ab initio</i> molecular dynamics (MD)	10 MB - 10 TB
Ш	Excitation energies, dielectric screening, matrix elements of Coulomb interaction, etc. optical spectra, electrical conductivity, phonon spectra, thermal conductivity, etc.	Many-body perturbation theory (MBPT), DF perturbation theory, ab initio MD	1 GB - 1 TB
IV	Efficiency of solar cell, thermoelectric figure of merit, turn-over frequency of catalyst, etc. as a function of temperature and pressure	Modeling, output derived from levels I-III phenotype	10 kB - 1 MB

Movel Materials Discovery

http://nomad-repository.eu

The **NoMaD Repository**

Insight by sharing

Home

NoMaD Team

Why sharing?

Terms

DOIs

FAQ Other repositories Upload your files

Search and download

Contact us

Welcome to the NoMaD Repository

The NoMaD (Novel Materials Discovery) Repository was established to host, organize, and share materials data.

NoMaD copes with the increasing demand and requirement of storing scientific data and making them available for longer periods. Rules of good scientific

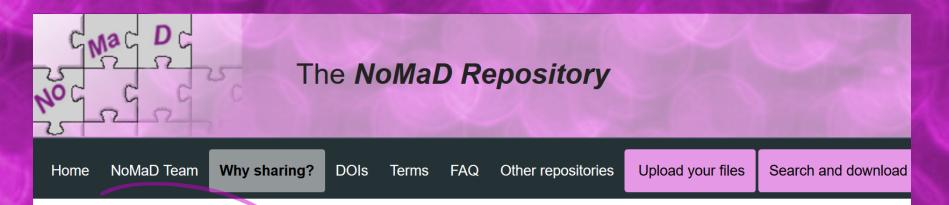
News

Currently, the NoMaD Repository contains

3 309 778

entries

Upload to NoMaD from MedeA andication ... more


> or related conferences kshops.

al Support

The NoMaD (Novel Materials Discovers) Repository was established to host, organize, and share materials data.

The NoMaD Reposi voutube to see our I

NoMaD Repository

Why sharing?

Our community is producing materials data by cpu-intensive calculations since many years. The results are stored on PCs, workstations, or local computers. Most of these data are not used or often even thrown away, though the information content is significant. We may change our according out the content of the content o

- Open access of data were openly analytic condense the present computer
- Sharing is not deviding
 Used data are not second-hand

n advanced codes. If d mathematicians, ably using tools that

- Many systems are context, but may be also useful for another application. Thus, if all the data were available, much of the same work could be avoided.
- Finally, since most of our computations are paid by taxpayer's money it should be a duty to publish all the results.

Bringing the data from different groups together, we all will profit. Most important, it will lead to novel insights. Our work will be cited even more, since it may turn out useful in a different context. And it will enable big-data analytics that, e.g., will be

Why sharing?

Avoid doubling of work

Spend human and computational resources for work beyond Complement the small amount of published information

Repurposing

One material may be also useful for different applications Anyone from neighboring research areas can use data

Good scientific practice

Science foundations require to keep data for 10 years

Responsibilty

Tax payer's money

Making data citable

The NoMaD Repository

Home NoMaD Team

Why sharing?

DOIs

Terms

FAQ Other repositories

Upload your files

Search and download

Digital Object Identifiers

To make your data citable, we offer you to request a digital object identifier (DOI). It can, e.g., be used to point to your data in a publication. DOIs can only be provided for datasets, not for single entries. For this purpose, a dataset, containing this entry, must be created before. Obviously, a DOI can only be provided for open-access data.

To receive a DOI, login to your account, go to *My uploaded data*, mark the corresponding dataset and request a DOI by clicking on *Create DOI for dataset*. You will receive the DOI within seconds. Browsing this DOI will lead you to the entry in the repository. This service is free.

The NoMaD Repository is a joint effort by the groups of Matthias Scheffler, FHI Berlin and Claudia Draxl, HU Berlin, and the Computer Center of the Max-Planck Society.

More aspects of data curation ...

- The NoMaD Repository accepts and requests input and output files from all major community codes
 - Currently 20, in a few days 30, in a few months 40
- Only few metadata
- Uploader, code & version, space group, ...
- All data are valid
 - Data are produced for a given purpose
 - Errata are possible
- Data are kept for at least 10 years
- If protected, made open access after 3 years

What to do with all these data?

What can be considered a big-data problem is, actually, a chance - the chance to learn from these data and obtain unprecedented insight.

Besides high-throughput screening, the availability of materials data opens new routes for basic materials science, identifying trends, mechanisms, and anomalies.

Kristian Thygesen DTU Lyngby

Ciaran Clissman Pintail Dublin

Arndt Bode LRZ Munich

Jose Maria Cela **BSC Barcelona**

Alessandro De Vita Kings College London

Matthias Scheffler FHI Berlin

Angel Rubio MPSD Hamburg

Risto Nieminen Aalto Univ. Helsinki

Kimmo Koski **CSC Helsinki**

Francesc Illas Univ. Barcelona

Daan Frenkel Univ. Cambridge

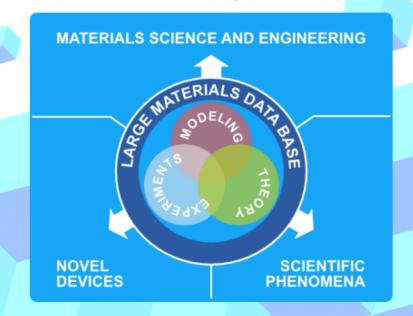
Claudia Draxl

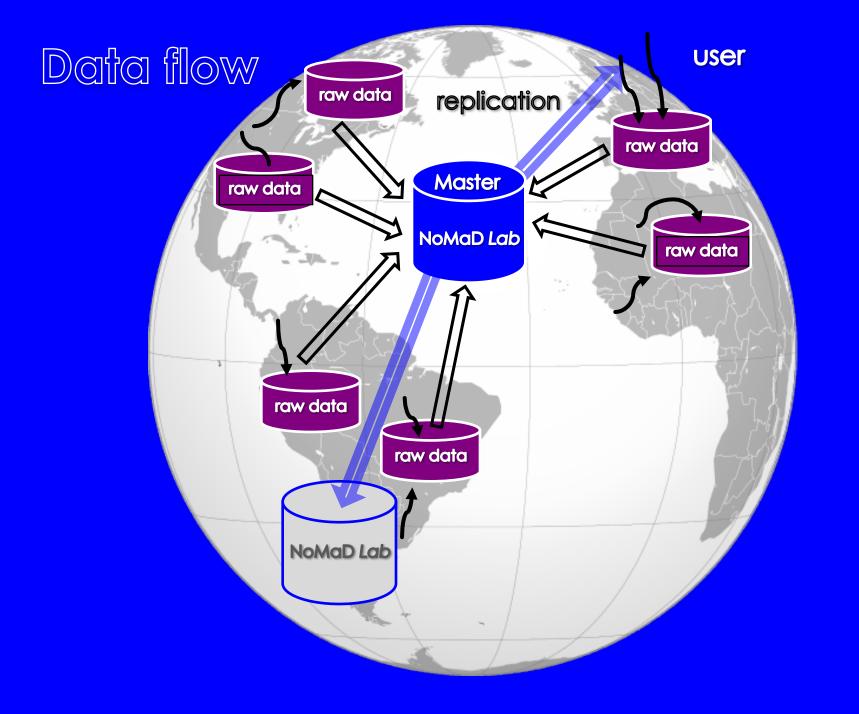
HU Berlin

Stefan Heinzel MPSCD Garching

NOMAD COE

Aims at filling white spots https://NOMAD.CoE.eu


THE NOMAD LABORATORY A EUROPEAN CENTRE OF EXCELLENCE

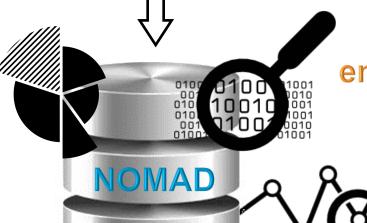

PROJECT INDUSTRY TEAM CODES NEWS PRESSIGN CONTACT US

Enter Search...

The Novel Materials Discovery (NOMAD) Laboratory develops a Materials Encyclopedia and Big-Data Analytics and Advanced Graphics Tools for materials science and engineering.

Eight complementary computational materials science groups and four high-performance computing centers form the synergetic core of this Centre of Excellence.

NOMAD Laboratory


Existing resources
Code-dependent data

Data conversion

Give access to the vast amount of materials data computed worldwide

Big-data analytics

database

Materials encyclopedia

HPC expertise & hardware

Visualization

Data conversion

How to make data comparable?

NOMAD supports ~40 different computer codes Common representation for various quantities

Pseudopotentials vs all-electron methods, ...

Evaluate error bars

Different functionals, force fields, ...

Metadata

Hierarchical metadata schema

Generic and code-specific

https://nomad-coe.eu/index.php?page=nomad-meta-info

What about the data quality?

Validation

Sven Lubeck

Andris Gulans

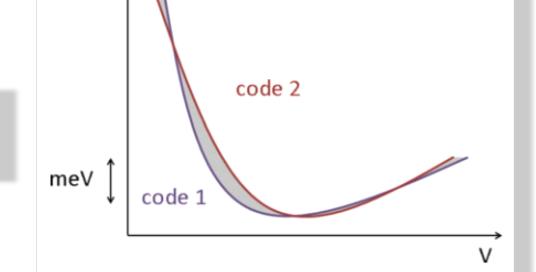
Delta factors

RESEARCH ARTICLE

Reproducibility in density functional theory calculations of solids

Kurt Lejaeghere, ^{1*} Gustav Bihlmayer, ² Torbjörn Björkman, ^{3,4} Peter Blaha, ⁵ Stefan Blügel, ² Volker Blum, ⁶ Damien Caliste, ^{7,8} Ivano E. Castelli, ⁹ Stewart J. Clark, ¹⁰ Andrea Dal Corso, ¹¹ Stefano de Gironcoli, ¹¹ Thierry Deutsch, ^{7,8} John Kay Dewhurst ¹² Igor Di Marco, ¹³ Claudia Draxl, ^{14,15} Marcin Dułak, ¹⁶ Olle Eriksson, ¹³ José A. Flores-Livas, ¹² Kevin F. Garrity, ¹⁷ Luigi Genovese, ^{7,8} Paolo Giannozzi, ¹⁸ Matteo Giantomassi, ¹⁹ Stefan Goedecker, ²⁰ Xavier Gonze, ¹⁹ Oscar Grånäs, ^{13,21} E. K. U. Gross, ¹² Andris Gulans, ^{14,15} François Gygi, ²² D. R. Hamann, ^{23,24} Phil J. Hasnip, ²⁵ N. A. W. Holzwarth, ²⁶ Diana Iuşan, ¹³ Dominik B. Jochym, ²⁷ François Jollet, ²⁸ Daniel Jones, ²⁹ Georg Kresse, ³⁰ Klaus Koepernik, ^{31,32} Emine Küçükbenli ^{9,11} Varasaku O. Kyashnin, ¹³ Inka L. M. Locht, ^{13,33} Sven Lubeck, ¹⁴ Martijn Marsaka ³⁰ Nicola Marzari ⁹ Ulrike Nitzsche, ³¹ Lars Nordström, ¹³ Taisuke Ozaki, ³⁴ Lorenzo Paulatto, ³⁵ Chris J. Pickard, ³⁶ Ward Poelmans, ^{1,37}

Delta factors


Compute E(V) using PBE

Fit to the Birch-Murnaghan equation of state

Compare with other codes / method

Quality factor A

$$\Delta = \left\langle \sqrt{\frac{\int \Delta E^2(V) dV}{\Delta V}} \right\rangle$$

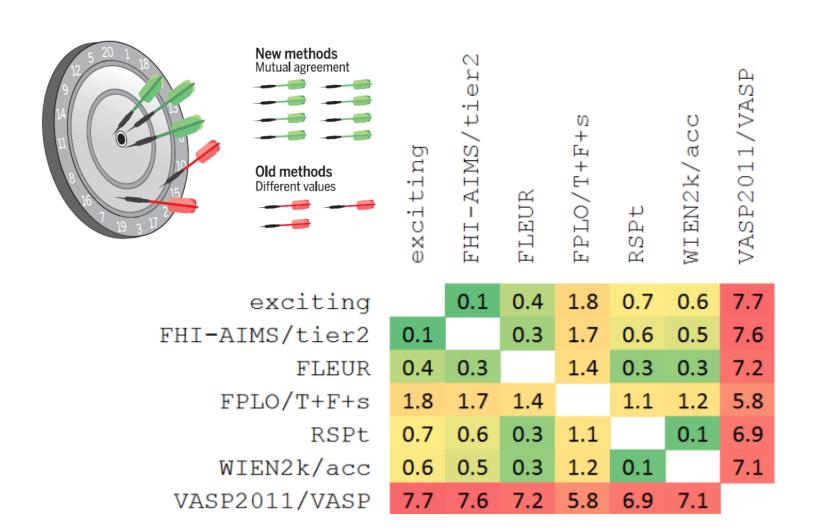
RESEARCH ARTICLE SUMMARY

DFT METHODS

Reproducibility in density functional theory calculations of solids

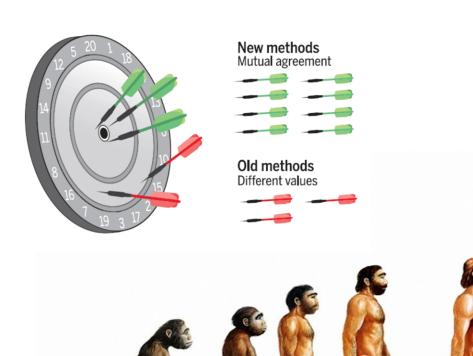
K. Lejaeghere et al., Science **351**, aad3000 (2016).

https://molmod.ugent.be/deltacodesdft


Code	Version	Basis	Electron treatment	∆-value	Authors
Exciting	developmen version	t LAPW+xlo	all-electron	0 meV/atom	Exciting [10,16] 🔓
FHI-aims@	081213	tier2 numerical orbitals	all-electron (relativistic atomic_zora scalar)		ASE [2,16]
WIEN2k₽	13.1	LAPW/APW+lo	all-electron	0.2 meV/atom	S. Cottenier [16] 🔓
FHI-aims@	081213	tier2 numerical orbitals	all-electron (relativistic zora scalar 1e-12)		ASE [2]
Quantum ESPRESSO		plane waves	SSSP Accuracy (mixed NC/US/PAW potential library)		QuantumESPRESSO [12,16]

https://molmod.ugent.be/deltacodesdft

Delta factors


Code	Version	Basis	Electron treatment	Δ-value	Authors
Exciting	development version	t LAPW+xlo	all-electron	0 meV/atom	Exciting [10,16] 🕒
FHI-aims@	081213		l all-electron (relativistic atomic_zora scalar)	0.1 meV/atom	ASE [2,16]
WIEN2k₽	13.1	LAPW/APW+lo	all-electron	0.2	S. Cottenier [16] 占
FHI-aims⊌	081213		l all-electron (relativistic zora scalar 1e-12)		ASE [2] =
Quantum ESPRESSO		plane waves	SSSP Accuracy (mixed NC/US/PAW potential library)		QuantumESPRESSO 1[12,16]

Delta factors

 O_2

Delta factors

	year (2	Δ vs AE
JTH01/ABINIT	2013	1.1
JTH02/ABINIT	2014	0.6
Vdb/CASTEP	1998	6.5
OTFG7/CASTEP	2013	2.6
OTFG9/CASTEP	2015	0.7
GPAW06/GPAW	2010	3.6
GPAW09/GPAW	2012	1.6
PSlib031/QE	2013	1.7
PSlib100/QE	2013	1.0
VASP2007/VASP	2007	2.0
VASP2012/VASP	2012	0.8
VASPGW2015/VASP	2015	0.6

Slide from S. Cottenier

K. Lejaeghere et al., Science 351, aad3000 (2016).

This is all great

... but just the beginning

What about other systems surfaces, defects, molecules, ...

What about other quantities band gaps, barriers, spectra ...

Can we reach ultimate precision?

Total energies of atoms compared to MADNESS

Andris Gulans

Same for molecules

Yes we can!

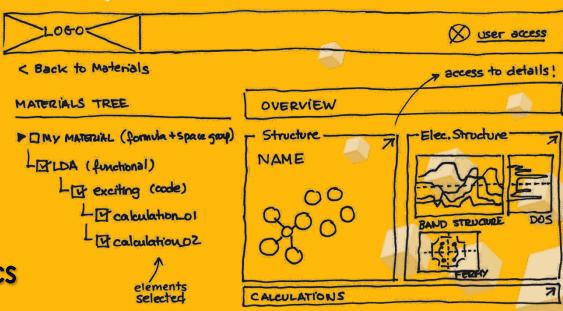
Ha	μŀ	ła

	$E^{\text{LAPW+lo}}$	ΔE^{MRA}
$_{\mathrm{H}}$	-0.4787107	0.5
$_{\mathrm{He}}$	-2.8344552	0.2
$_{ m Li}$	-7.3432843	1.6
Be	-14.4464735	0.6
В	-24.3548568	1.3
$^{\rm C}$	-37.4685404	0.9
N	-54.1343867	0.7
O	-74.5286993	0.2
\mathbf{F}	-99.1118530	-0.3
Ne	-128.2299171	0.3
Na	-161.4436320	2.1
Mg	-199.1352882	0.7
Al	-241.3178300	2.3
Si	-288.2171655	1.6
P	-340.0000526	1.8
\mathbf{S}	-396.7390648	0.7
Cl	-458.6643433	0.1
Ar	-525.9397933	0.8

The Materials Encyclopedia transforms the calculation-oriented information in the Archive (Repository) to materials-oriented knowledge and provides a user-friendly public access point to it.

Comprehensive characterization of materials

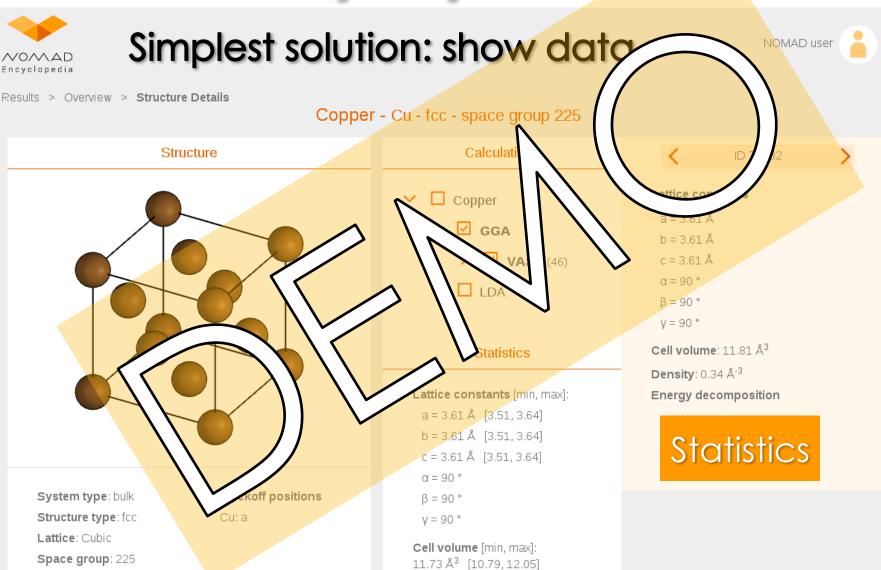
Extensive information on a specific material


Structural features

Mechanical behavior

Thermal properties

Electronic structure


Transport characteristics

Response to light and other excitations

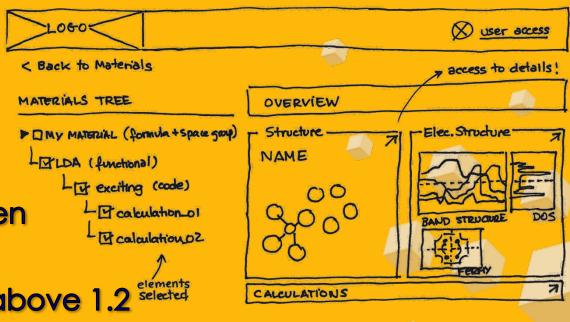
Overview & statistics
Methodology & confidence level(s)
Individual calculations & links

Point group: m-3m

Density [min, max]: 0.34 Å⁻³ [0.33, 0.37]

Search for materials that exhibit desired features

Example: Find all materials ...


containing C or Si but not Cd or As

ductile below room temperature

with band gap between 1.0 and 1.3 eV

with effective masses above 1.2

without inversion symmetry

Not all information directly available in the Archive

Data Analytics

Identifying correlations and structure in big data of materials will enable scientists and engineers to decide which materials are useful for specific applications or which new materials should be the focus of future studies.

Summary and outlook

The NoMaD Repository serves the purpose of organizing and sharing materials data

The NOMAD Laboratory aims at giving access to and getting insight into the vast amount of materials data computed worldwide

Encyclopedia available online May 2017 First data-analytics tools online already This project has received funding from the European Union's Horizon 2020 research and innovation programme, grant agreement No 676580.

Thank you!

