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* Microstructural images are key components
for materials data and analytics approaches.

« We should represent them as we see them: not
as materials data, but as image data.

* Data science unlocks new applications of
microstructural data.
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A computer vision system for microstructural
representation

e Using machine vision and machine learning techniques, we
automatically harvest, store, and compare microstructural image
data.
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1: Extract keypoint descriptors 2: Obtain visual dictionary 3: Create microstructural signatures

DeCost, Brian L., and Elizabeth A. Holm. Comp. Mater. Sci. 110 (2015): 126-133.
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Extract keypoint descriptors

* Apply contrast-gradient
detectors to identify features

Difference of Gaussians
(blobs - red)

Harris-Laplace (corners -
yellow)
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Characterize keypoint descriptors as vectors

e SIFT: Scale Invariant Feature
Transform

—  spatially resolved
histogram of oriented
intensity gradient values

—  rotation and scale
invariant local feature
descriptor

— 128 element vector
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Create a visual dictionary

Visual bag of words (PCA-reduced SIFT)

* Determine N most frequent
“visual words” via k-means
cluster analysis

—  Locate the centroids of the
N best clusters

—  Voronoi partition the
128-D space using cluster
centroids as cell centers

SIFT descriptor principal component 2

SIFT descriptor principal component 1
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Create a visual dictionary

Visual words can be
represented by image patches,
corresponding to their
centroid feature, i.e. a
metafeature

particles

corners

flat boundaries
edges

speckled textures

etc.

100 most frequent visual words in the
Cambridge Micrograph Library
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Determine “microstructural fingerprints”

e The histogram of visual words generates a unique microstructural
identifier, the “microstructural fingerprint.”
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Now that the visual content of a microstructure is
captured in a vector representation, what can we
do with it?

* Search

* Sort

* Scan

* Specity
 Systematize

* Science

Carnegie Mellon University 9



Visual search of the DoitPOMS database

e Histogram similarity can form the basis for a visual search:

Input image Second match Third match Fourth match

—
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Sorting powders for AM

* Additive manufacturing process control and component quality depend
on characteristics of the powder feedstock.

* Can our system classify different powders from SEM images?
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Powder classification results

*  The machine vision system classifies powders with ~95% accuracy

*System trained on ~24 images in
10 each class, and tested on ~12
previously unseen images.
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The machine vision system is
as accurate as segmentation
and measurement (and more
accurate than the human eye).
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Scaning through images

*  Visually clustering images enables efficient exploration of the data set

t-SNE map of 894 high- _
carbon steel micrographs &

(box colors represent
processing conditions)

B

Dataset courtesy of Matt Hecht, Prof. Yoosuf Picard, Prof. Bryan Webler of CMU
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Specify microstructural appearance

* It can be difficult to create a specification for microstructure: What must be
measured? What subjective decisions must be made?

*  Avision representation contains both qualitative and quantitative
information for an entirely objective comparison

This is the de
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Systematize images

*  How do we decide what image “represents” the material?

*  We can find the image closest to the cluster center of images of that
material. This is an objective definition of “most representative.”

The representative
microstructure of a Ti64
AM build:

The least representative
microstrucure

Images courtesy of E. Schwalback, AFRL
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Conclusions

* Microstructural images are key components for materials data and
analytics approaches.

» We should represent them as we see them: not as materials data,
but as image data.

 Data science unlocks new applications of microstructural data:
search, sort, scan, specify, systematize

* Next steps:

— Bigger and more datasets!

— Link metadata to image data = Science!
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