
Carelyn	Campbell,	Ben	Blaiszik,	Laura	Bartolo

November	1,	2016	



Data	Landscape
Collaboration	Tools
(e.g.	Google	Drive,	

DropBox,	Sharepoint,	
Github,	MatIN)	

Data	Sharing	
Communities	

(e.g.	Dryad,	FigShare,	
NanoHub,	Kaggle,	NDS)

Data	Repositories
(e.g.	Aflow,	MaterialsProject,	
OQMD,	NIMS	MaterialNavi,	
NoMaD,	Materials	Universe)

Data	
Curation

Data	Analysis	
Tools

Software



Data	curation	is	the	active	and	ongoing	management	of	data	through	its	
lifecycle	of	interest	and	usefulness	to	scholarship,	science,	and	
education.	

http://ischool.illinois.edu/academics/degrees/specializations/data_curation

Scott	Adams,	October	30,	2011



4Representative list of tools focused on materials data, but not comprehensive 



5

Data Model Definition
Defines the structure of metadata and data 
Measurement Data Model

Metadata e.g.
• Sample owner
• Date of measurment Kα1
• Sample stage position
• Apparatus temperature

Data e.g.
• As XML
• Raw data (text, ASCII, binary) 
• Imported table 
• Link to image or raw data*



6

Example APS Data (Large Data 
Example)

Generate 
Data at APS

Analysis 
Tools

Analyzed 
Data

Share 
Data
And 

Metadata

NanoHub



Workflows

• Large	Data	sets:	Single	Point	Source	(e.g.	APS)
• Experimental	data	(small	to	medium	size),	
multiple	source	generation

• Computational	Data	

• Infrastructure	Selection	Tool



Stress-Strain	Measurement	



Sample	
Geometry

Stress-Strain	
Measurement

Load	
Frame DIC LVDT

Sample	
Metadata

LVDT	
data

Load	Frame	
Data

DIC	
data

Experimental	Workflow:	
Stress-strain	Measurement

LVDT	
Metadata

Load	Frame	
Metadata

DIC	
Metadata

Analysis
(Tools	e.g.	
Github,	
Matlab)

R
e
s
u
l
t
s

MDF

Granta

Other

Curate	with	
Materials	
Commons	or	ICE		



Big	Data	Workflow



Computational	Data	Workflow

• Lots	of	different	techniques
• PhaseField modeling:		no	standards.		
• Community	standards	needed	

• Codes	changes	quickly
• Social	change	needed.	
• FEM	- more	benchmark.		-- more	standardize



How	do	I	select	a	
Materials	Data	Infrastructure	Tool?



A Taxonomy of Workflow Management Systems for Grid Computing

Jia Yu and Rajkumar Buyya*
Grid Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer Science
and Software Engineering, The University of Melbourne, Melbourne, Australia
E-mail: raj@cs.mu.oz.au

Received 28 May 2005; accepted in revised form 6 December 2005

Key words: Grid computing, resource management, scheduling, taxonomy, workflow management

Abstract

With the advent of Grid and application technologies, scientists and engineers are building more and more
complex applications to manage and process large data sets, and execute scientific experiments on distributed
resources. Such application scenarios require means for composing and executing complex workflows.
Therefore, many efforts have been made towards the development of workflow management systems for Grid
computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for
building and executing workflows on Grids. We also survey several representative Grid workflow systems
developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The tax-
onomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid
workflow systems, but also identifies the areas that need further research.

1. Introduction

Grids [51] have emerged as a global cyber-infra-
structure for the next-generation of e-Science appli-
cations by integrating large-scale, distributed and
heterogeneous resources. Scientific communities,
such as high-energy physics, gravitational-wave phys-
ics, geophysics, astronomy and bioinformatics, are
utilizing Grids to share, manage and process large data
sets. In order to support complex scientific experi-
ments, distributed resources such as computational
devices, data, applications, and scientific instruments
need to be orchestrated while managing the applica-
tion workflow operations within Grid environments
[92].

Workflow is concerned with the automation of
procedures whereby files and data are passed be-
tween participants according to a defined set of rules

to achieve an overall goal [35]. A workflow man-
agement system [5] defines, manages and executes
workflows on computing resources. Imposing the
workflow paradigm for application composition on
Grids offers several advantages [117] such as:

! Ability to build dynamic applications which or-
chestrate distributed resources.

! Utilization of resources that are located in a par-
ticular domain to increase throughput or reduce
execution costs.

! Execution spanning multiple administrative do-
mains to obtain specific processing capabilities.

! Integration of multiple teams involved in manag-
ing of different parts of the experiment workflow
Y thus promoting inter-organizational collabora-
tions.

Figure 1 shows the architecture and functionalities
supported by various components of the Grid work-
flow system based on the workflow reference model

j

j Corresponding author.

Journal of Grid Computing (2006) 3: 171–200 # Springer 2006
DOI: 10.1007/s10723-005-9010-8

their dependencies in the form of Directed Acyclic
Graph (DAG). Before mapping, Pegasus reduces the
abstract workflow by reusing a materialized dataset
which is produced by other users within a VO.
Reduction optimization assumes that it is more costly
to produce a dataset than access the processing
results. The reduction algorithm removes any ante-
cedents of the redundant jobs that do not have any
unmaterialized descendents in order to reduce the
complexity of the executable workflow.

Pegasus consults various Grid information serv-
ices to find the resources, software, and data that are
used in the workflow. A Replica Location Service
(RLS) [30] and Transformation Catalog (TC) [39] are
used to locate the replicas of the required data, and to
find the location of the logical application compo-
nents respectively. Pegasus also queries Globus

Monitoring and Discovery Service (MDS) [34] to
find available resources and their characteristics.

There are two methods used in Pegasus for re-
source selection, one is through random allocation, the
other is through a performance prediction approach. In
the latter approach, Pegasus interacts with Prophesy
[68, 140], which serves as an infrastructure for per-
formance analysis and modeling of parallel and
distributed applications. Prophesy is used to predict
the best site to execute an application component by
using performance historical data. Prophesy gathers
and stores the performance data of every application.
The performance information can provide insight
into the performance relationship between the appli-
cation and hardware and between the application,
compilers, and run-time systems. An analytical
model is produced based on the performance data

Table 2. Workflow design taxonomy mapping.

Project name Structure Model Composition systems QoS constraints

DAGMan DAG Abstract User-directed User specified rank

expression for desired resources& Language-based

Pegasus DAG Abstract User-directed N/A

& Language-based

Automatic

Triana Non-DAG Abstract User-directed N/A

& Graph-based

ICENI Non-DAG Abstract User-directed Metrics specified by users

& Language-based

& Graph-based

Taverna DAG Abstract/concrete User-directed N/A

& Language-based

& Graph-based

GridAnt Non-DAG Concrete User-directed N/A

& Language-based

GrADS DAG Abstract User-directed Estimated application execution time

& Language-based

GridFlow DAG Abstract User-directed Application execution time

& Graph-based

& Language-based

Unicore Non-DAG Concrete User-directed N/A

& Graph-based

Gridbus workflow DAG Abstract/concrete User-directed Deadline, cost minimisation

& Language-based

Askalon Non-DAG Abstract User-directed Constrains and properties specified

by users or pre-defined& Graph-based

& Language-based

Karajan Non-DAG Abstract User-directed N/A

& Language-based

& Graph-based

Kepler Non-DAG Abstract/concrete User-directed N/A

& Graph-based

185

Example:	Workflow	Tool	Selection

their dependencies in the form of Directed Acyclic
Graph (DAG). Before mapping, Pegasus reduces the
abstract workflow by reusing a materialized dataset
which is produced by other users within a VO.
Reduction optimization assumes that it is more costly
to produce a dataset than access the processing
results. The reduction algorithm removes any ante-
cedents of the redundant jobs that do not have any
unmaterialized descendents in order to reduce the
complexity of the executable workflow.

Pegasus consults various Grid information serv-
ices to find the resources, software, and data that are
used in the workflow. A Replica Location Service
(RLS) [30] and Transformation Catalog (TC) [39] are
used to locate the replicas of the required data, and to
find the location of the logical application compo-
nents respectively. Pegasus also queries Globus

Monitoring and Discovery Service (MDS) [34] to
find available resources and their characteristics.

There are two methods used in Pegasus for re-
source selection, one is through random allocation, the
other is through a performance prediction approach. In
the latter approach, Pegasus interacts with Prophesy
[68, 140], which serves as an infrastructure for per-
formance analysis and modeling of parallel and
distributed applications. Prophesy is used to predict
the best site to execute an application component by
using performance historical data. Prophesy gathers
and stores the performance data of every application.
The performance information can provide insight
into the performance relationship between the appli-
cation and hardware and between the application,
compilers, and run-time systems. An analytical
model is produced based on the performance data

Table 2. Workflow design taxonomy mapping.

Project name Structure Model Composition systems QoS constraints

DAGMan DAG Abstract User-directed User specified rank

expression for desired resources& Language-based

Pegasus DAG Abstract User-directed N/A

& Language-based

Automatic

Triana Non-DAG Abstract User-directed N/A

& Graph-based

ICENI Non-DAG Abstract User-directed Metrics specified by users

& Language-based

& Graph-based

Taverna DAG Abstract/concrete User-directed N/A

& Language-based

& Graph-based

GridAnt Non-DAG Concrete User-directed N/A

& Language-based

GrADS DAG Abstract User-directed Estimated application execution time

& Language-based

GridFlow DAG Abstract User-directed Application execution time

& Graph-based

& Language-based

Unicore Non-DAG Concrete User-directed N/A

& Graph-based

Gridbus workflow DAG Abstract/concrete User-directed Deadline, cost minimisation

& Language-based

Askalon Non-DAG Abstract User-directed Constrains and properties specified

by users or pre-defined& Graph-based

& Language-based

Karajan Non-DAG Abstract User-directed N/A

& Language-based

& Graph-based

Kepler Non-DAG Abstract/concrete User-directed N/A

& Graph-based

185



Example:	Hardware	Store	Website

Credit:	homedepot.com
Any	mention	of	commercial	products	is	for	information	only;	it	does	
not	imply	recommendation	or	endorsement	by	NIST.



Example:	Used	Car	Website

Credit:	carmax.com
Any	mention	of	commercial	products	is	for	information	only;	it	does	
not	imply	recommendation	or	endorsement	by	NIST.



Registry:	Materials	Data	Infrastructure	Tools	



First	Rough	Draft	Taxonomy



First	Rough	Draft	Taxonomy



First	Rough	Draft	Taxonomy



First	Rough	Draft	Taxonomy



Notes	from	Summit	Wrap-up	Session
• Integrate	tools	into	undergraduate	education	

– Tools	need	to	more	user	friendly	
• Embed	data	experts	into	experimental	groups

– Alternate:	floating	data	experts	available	for	experimental	groups.
– Need	to	define	skills	needed	for	these	data	experts

• Encourage	more	conference	exchanges	at	Data	Analytics	and	Materials	
communities

• Define	data	curation	guidelines/code	
– Benefit	to	users	

• Data	Challenge		(Student)
– Prize	for	data	set
– Best	paper/DOI/PID

• Develop	implementation	path	
• Improve	peer	recognition
• Develop	data	cite	profile	

Interest	in	following	up	with	small	working	groups	on	specific	issues.	




