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1. Center for Hierarchical Materials Design

Foreword
The classical industrial materials development paradigm rests on a make-and-test strategy that
results in unacceptably long times and increased costs before new materials can be inserted into
applications. By contrast, materials design strategies offer the potential to radically transform
U.S. manufacturing and cut costs dramatically by changing the way in which new products are
deployed or inserted into production lines. The Center for Hierarchical Materials Design (CHiMaD)
was founded to enable this transformation of U.S. manufacturing. Our mission is to demonstrate,
advance, and disseminate the power of the materials design approach by providing opportunities
to train scientists and engineers in materials design, by fostering the development of synergistic
computational, experimental tools and, most importantly, the data that enable design, and by
discovering new materials. CHiMaD has become a forum where multidisciplinary and multi-sector
communities convene for in-depth discussions on all topics related to Materials Genome Initiative
(MGI). A close partnership with the National Institute of Standards and Technology (NIST) has
been central to the Center’s success on all fronts.

We are pleased to present the 2021 annual report of the Center for Hierarchical Materials Design
(CHiMaD), NIST Center of Excellence in Advanced Materials. Near the beginning of the second
year of our new cycle a world-wide pandemic led to a change in the manner in which the CHiMaD
performed it research, outreach, and educational missions. Given this, the great progress described
in this report is again a credit to the creativity and perseverance of the CHiMaD PIs and collaborators
at NIST. We are designing revolutionary materials from cobalt superalloys to thermoelectrics and
polymer blends. The data created is shared with the community and drives the machine learning
algorithms used in materials design and discovery.

2022 promises a return to in-person meetings and training sessions, as well as fully staffed labora-
tories. It will be a truly exciting year to push forward the field of materials genomics.

Peter Voorhees, Juan de Pablo, CHiMaD Directors
Greg Olson, Chief Designer
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2. Major Goals and Objectives

Mission and Vision

Accelerating materials discovery and commercialization by design and development of hierarchical
methods and materials and enabling the complete integration of computation, experimentation and
databases by building a strong community of current and future researchers

Designing novel materials of specific properties for a particular application requires
simultaneously utilizing physical theory, advanced computational methods and models,
materials properties databases and complex calculations. This approach stands in contrast
to the traditional trial-and-error method of materials discovery. CHiMaD aims to focus this
approach on the creation of novel hierarchical materials which exploit distinct structural
details at various scales, from the atomic on up, to obtain enhanced properties. The center’s
research focuses on both organic and inorganic advanced materials in fields as diverse
as self-assembled biomaterials, smart materials for self-assembled circuit designs and,
advanced metal alloys.

Objectives
• Create a collaborative environment and concentration of scientific and technical

capability to accelerate materials discovery and development
• Provide opportunities to transition new breakthroughs in advanced materials to

industry
• Convene multidisciplinary and multi-sector communities for in-depth discussions
• Provide training opportunities for scientists and engineers in materials metrology
• Foster the development of artificial intelligence fueled materials design
• Foster the development of integrated computation, modeling and data-driven tools
• Foster the discovery of new materials
• Establish opportunities for extended collaborations with NIST

Major Goals

CHiMaD is demonstrating the power and potential of bringing together data science,
computational approaches and state-of-art experiments to design materials ranging from
alloys for additive manufacturing to polymers for impact protection. Our research efforts
compass eight active use-case groups, and four tool development efforts along with
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Figure 2.1: Hierarchical architecture of methods, tools (green), and databases (tan) for next-
generation materials design and accelerated qualification.

databases and outreach. The design goals and accomplishments of each group is stated in
the next chapters.



3. 2D Electronic Materials Inks

Mark Hersam (NU), Lincoln Lauhon (NU), Tobin Marks (NU), Chris Wolverton (NU),
Guilia Galli (UC)

Albert Davydov (NIST), Dean Delongchamp (NIST), Lee Richter (NIST)

3.1 Design Goals
Two-dimensional (2D) materials have emerged as promising candidates for next-generation
electronics. With properties ranging from insulating (e.g., hexagonal boron nitride (hBN))
to semiconducting (e.g., transition metal dichalcogenides) to conducting (e.g., graphene),
nearly any electronic device can be fabricated by properly assembling 2D materials
into heterostructures. While device prototypes have been demonstrated on idealized
research-scale samples, scalable manufacturing remains an unresolved challenge for 2D
electronic materials. In parallel, the field of printed electronics has made significant
progress towards roll-to-roll additive manufacturing based on organic and nanoparticle
inks. The 2D Electronic Material Inks Use-Case Group aims to unite these efforts by
designing electronic inks that combine the superlative electronic properties of 2D materials
with the scalable manufacturing of printed electronics. Importantly, the diverse range of
properties provided by 2D materials imply that printed 2D electronic material inks will not
only enable printed electronics but also other flexible and wearable technologies including
printed sensors, batteries, and supercapacitors.

To achieve the ultimate goal of developing libraries of printed 2D electronic material inks,
multiple design considerations will be concurrently optimized.

Exfoliation: Design goals include optimizing exfoliation yield, throughput, and flake size,
while minimizing structural and chemical defects in the resulting 2D materials.

Ink formulation: Design goals include engineering solvents and stabilizing surfactants and
polymers with tailored rheological properties for additive manufacturing (e.g., aerosol,
inkjet, gravure, and screen printing), while maintaining substrate adhesion and mechanical
flexibility for roll-to-roll processing.

Printed structure morphology: Design goals include controlling film morphology and
microstructure following printing via solvent evaporation, solvent additives, surface hy-
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drophilicity, and novel substrates and coatings, including those based on 2D materials.

Control of interfacial properties: Design goals include minimizing interfacial resistance
in conductive inks, maximizing porosity for low-k dielectric inks, minimizing thickness
and leakage current for high-k dielectric inks, and maximizing mobility for semiconductor
inks. For example, in the case of conductive graphene inks, quantitative design targets
include charge carrier mobilities greater than 100 cm2/V-s and electrical conductivities in
excess of 104 S/m, which will enable corresponding reductions in the contact resistance to
printed semiconductors that currently limit the performance of heterostructure diodes and
transistors.

The system design chart in Figure 3.1 delineates the processing-structure-properties-
performance work flow for the 2D Electronic Material Inks Use-Case Group.

Figure 3.1: The System Design Chart for the 2D Electronic Material Inks Use-Case Group
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3.2 Research Accomplishments

Over the past year, the 2D Electronic Material Inks Use-Case Group made significant
progress towards many of its design goals. Specific accomplishments include:

Figure 3.2: Graphene inks and printed devices. (a) Optimized graphene ink for aerosol jet printing.
(b) Aerosol-jet-printed graphene dipstick electrodes. (c) SEM of the surface of an AJP graphene
film, showing a dense network of percolating nanosheets. (d) XPS of an AJP graphene film showing
high sp2-carbon content and low carbonyl defects. (e) Optimized graphene ink for screen printing.
(f) A sheet of screen-printed graphene dipstick electrodes.

3.2.1 Graphene Inks for Printed Electrochemical Biosensors

Previously, the Hersam group showed that graphene-ethyl cellulose (GrEC) inks can be
aerosol jet printed (AJP) to produce highly conductive films. Building on this finding,
GrEC AJP ink formulations were optimized with a solids loading of 10 mg/mL and solvent
system of 9:1 ethanol: terpineol (Figure 3.2A). This solvent system inhibits complete
evaporation of aerosol droplets during printing and is also shelf stable on the order of
months, as confirmed by rheological tests. This ink was used to print graphene dipstick
electrodes (Figure 3.2B). Scanning electron microscopy (SEM) confirms the deposition
of a dense network of graphene nanosheets with low porosity (Figure 3.2C), and X-ray
photoelectron spectroscopy (XPS) reveals a low concentration of graphene defects (9̃%)
that are useful for electrode functionalization (Figure 3.2D). These AJP graphene electrodes
were used in electrochemical biosensing for COVID-19 diagnostics. These results informed
the production of a new graphene screen printing ink with a loading of 140 mg/mL GrEC
in terpineol (Figure 3.2E). This formulation was used to screen print graphene dipstick
electrodes (Figure 3.2F) with relatively high throughput (i.e., 300 electrodes in 10 min
versus 2 devices in 10 min with the aerosol jet printer). The screen-printed electrodes
have lower device-to-device variability compared to AJP electrodes and are also being
employed for electrochemical biosensing of SARS-CoV-2 coronavirus.
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Figure 3.3: (a) Transfer curves of AJP transistors using both the hBN ionogel dielectric (red) and a
silica dielectric (black). (b) Schematic depicting the fabrication of fully-screen printed batteries
using the hBN ionogel electrolyte. (c) Cycling performance of the printed batteries. (d) Capacity
retention and Coulombic efficiency of the printed batteries. (e) Photograph of the flexible battery
powering a light-emitting diode. (f) Electrochemical impedance spectroscopy of the printed battery
during bending. (g) Open circuit voltage measurements while pressure is applied to the printed
batteries.

3.2.2 Hexagonal Boron Nitride Ionogel Inks for Printed Sensors, Batteries, and
Supercapacitors
Previously, Hersam reported the development of hexagonal boron nitride (hBN) ionogel
printable inks. By combining the room temperature ionic liquid EMIM-TFSI with exfoli-
ated hBN nanoplatelets, a solid electrolyte gel is formed with high ionic conductivity (>1
mS/cm) and mechanical modulus (>1 MPa). With the addition of ethyl lactate, a non-toxic
solvent, the ink rheology can be tuned for various printing methods. During this reporting
period, Hersam expanded the development of fully printed, hBN ionogel-based transistors,
batteries, and supercapacitors.

In collaboration with Marks, thin-film transistors were fabricated via aerosol jet printing.
The fully printed devices consist of graphene electrodes, an indium gallium zinc oxide
(IGZO) semiconductor channel, and an hBN ionogel dielectric. Notably, higher currents
were reached using the hBN ionogel dielectric at low operating voltages compared to a
traditional SiO2 dielectric (Figure 3.3A), highlighting the effectiveness of the ionogel for
gating.

In another demonstration, hBN ionogel-based thin film batteries were fully screen printed.
In this application, a lithium salt is added to the ionogel ink formulation. The battery
structure consists of flexible aluminum foil current collectors, an LiFePO4 cathode, and an
LiTi4O12 anode. After the electrodes were printed, the ionogel was printed on each half
and then sandwiched to form a full device (Figure 3.3B). The devices were evaluated at
multiple scan rates (Figure 3.3C). At 0.3C, the devices have a capacity of 124 mAh/g and
a capacity retention of 85% after 300 cycles (Figure 3.3D). Furthermore, the devices are
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fully flexible and cycle without disruption while bent. (Figure 3.3E, Figure 3.3F). Finally,
the devices maintain a constant open circuit voltage (OCV) even while being compressed
with a force of 500 N (Figure 3.3G), demonstrating the high mechanical strength that the
ionogel imparts to prevent short circuits.

Figure 3.4: (a) Photograph of an hBN ionogel feature printed using an automatic screen printer. (b)
Cyclic voltammetry curves at various scan rates of printed supercapacitors. (c) Cyclic voltammetry
curves of printed supercapacitors in various integration configurations: 2S is 2 devices in series, 2P
is 2 devices in parallel. (d) Photographs of screen-printed graphene interdigitated electrodes and
a supercapacitor device. (e) Photographs of fully printed supercapacitor arrays consisting of 100
total devices. (f) Galvanostatic charge-discharge curves for a supercapacitor array while at elevated
temperatures.

In a final demonstration, the large-scale manufacturing capabilities of the hBN ionogel
ink were explored via automatic screen printing of supercapacitor devices. By tuning
the screen printing parameters, precise hBN ionogel films were achieved (Figure 3.4A).
Planar supercapacitor devices were fabricated using screen printed graphene interdigitated
electrodes followed by the hBN ionogel electrolyte (Figure 3.4D). The devices achieve
an areal capacitance of 148 µ/cm2 with rectangular cyclic voltammetry curves even at
high scan rates (Figure 3.4B). The devices maintain their performance when connected
in series and parallel configurations using printed graphene interconnects (Figure 3.4C),
allowing for increased capacitance and voltage windows. Arrays consisting of 100 devices
were fabricated to demonstrate the possibility of large-scale device printing (Figure 3.4E).
It is estimated that >103 devices/hour can be manufactured using this system. Finally,
the arrays can be cycled at elevated temperatures up to 150�C without degradation and
with improved capacitance due to the hBN ionogel elevated ionic conductivity at high
temperatures (Figure 3.4F).

3.2.3 2D Semiconductor Inks for Printed Photodetectors
Fully printed photodetectors were fabricated using aerosol jet printable (AJP) inks of tetra-
heptylammonium bromide (THAB)-intercalated MoS2 and GrEC inks that were developed
by Hersam. High-aspect ratio MoS2 nanosheets were obtained by THAB intercalation,
and the flakes were further thinned by megasonic atomization, which is the process used to
create aerosol ink droplets for AJP (Figure 3.5A). Compared to ultrasonication, megasonic
atomization operates in a higher frequency regime on the order of MHz, resulting in more
controlled cavitation. Optical absorbance and photoluminescence (PL) spectroscopies
revealed a blueshift attributable to megasonic exfoliation during AJP, in agreement with
MoS2 flake thinning (Figure 3.5B, Figure 3.5D). Following AJP, the characteristic Raman
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Figure 3.5: (a) Schematic diagram of AJP,
depicting aerosolization via megasonic at-
omization. (b) Optical absorbance spectra
after various megasonic atomization times.
The inset shows the color comparison of
the inks before (left) and after megasonic
exfoliation (MSE) (right). (c) Raman spec-
tra before and after MSE. (d) Photolumi-
nescence spectra showing the effects of
MSE. (e) Atomic force microscopy flake
thickness distribution before and after MSE.
(f) Atomic force microscopy flake lateral
length distribution before and after MSE.

peaks shift in peak position, suggesting the presence of monolayer and bilayer MoS2
(Figure 3.5C). Similarly, atomic force microscopy (AFM) confirms a decrease in average
flake thickness from 2.2 nm to 1.3 nm, with lateral sizes of 1̃ micron before and after
megasonic exfoliation (Figure 3.5E, Figure 3.5F).
The MoS2 channel was printed on top of graphene electrodes on Kapton substrates (Figure
3.6A). The printed MoS2 flakes formed a densely stacked morphology despite their large
lateral size due to the addition of 5 vol% of the high boiling point solvent terpineol in the
ink formulation, as confirmed by grazing incidence wide-angle X-ray scattering (GIWAXS)
from Richter (NIST) that revealed a uniaxial texture (Figure 3.6B). AFM showed that
without terpineol, the flakes crumple into a ball-like morphology due to uncontrolled
evaporation of the carrier solvent (Figure 3.6C, Figure 3.6D). Photocurrent is mainly
attributable to the MoS2 channel rather than the graphene electrodes, as confirmed by
scanning photocurrent microscopy (SPCM) performed by Lauhon (Figure 3.7A, Figure
3.7B, Figure 3.7C). Linear current-voltage characteristics between the MoS2 and graphene
imply nearly Ohmic contacts in these devices (Figure 3.7D).
To remove the stabilizing polymers used in the ink formulation, either thermal annealing
at 280�C or photonic annealing was employed on the printed photodetectors. Overall,
the photonically annealed devices performed better than the thermally annealed devices
due to increased intermixing between the MoS2 and graphene flakes in the contact re-
gion. Spectrally resolved photocurrent, obtained by Lauhon, further confirmed that the
photoresponse arises from interband absorption within the MoS2 flakes (Figure 3.8A).
Responsivity was optimized as a function of printing passes. The peak in photocurrent
occurs at 5 printing passes for photonically annealed films and 15 passes for thermally
annealed films, reflecting morphological differences that arise from the two processes
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Figure 3.6: (a) Schematic showing AJP deposition and printed photodetector geometry. (b)
GIWAXS map of the printed MoS2 film, showing uniaxial texture along the c-axis that confirms
flat, densely stacked flakes. (c) AFM image of MoS2 deposited by AJP with the addition of the
high boiling point solvent terpineol. (d) AFM image of MoS2 deposited by AJP without terpineol,
showing crumping of flakes due to uncontrolled solvent evaporation.

(Figure 3.8B).

The photodetectors exhibited sublinear power dependence (Figure 3.8C). At low intensity
(7 x 10�5 W/cm2), the highest responsivity for photonically annealed devices reached
2730 A/W. The sublinear power dependence suggests the dominance of bimolecular recom-
bination that is expected for direct-bandgap materials, indicative of the high monolayer
nanosheet fraction in the megasonically exfoliated MoS2. Thus, the exceptionally high
photoresponse from our printed MoS2 photodetectors can be attributed to the atomically
thin MSE-derived MoS2 nanosheets with high aspect ratio. The robustness of the all-
printed, flexible photodetectors was verified by stable operation over >1000 bending cycles
at a bending radius of 12 mm (Figure 3.8D).

Both types of annealing conditions exhibited relatively fast response times of about 1-2 ms
rise time and 5 ms fall time (Figure 3.8E). Significantly, these photodetectors showed 3-4
orders of magnitude higher responsivity than previously reported all-printed photodetectors
in the visible light range (Figure 3.8F). Inherent advantages of AJP, such as megasonic
exfoliation, high resolution printing, and relaxed constraints on ink formulation, provide a
novel additive manufacturing route for harnessing the tunable properties of a diverse range
of 2D semiconductors in flexible optoelectronics.

3.2.4 Enhancing Semiconducting 2D Ink Performance by Scanning Probe-Informed
Modeling
This effort is providing a modeling framework for the concurrent design of MoS2 nanosheet
exfoliation processes and ink formulations by linking component structure and properties
to the output characteristics of printed 2D thin-film transistors (TFTs). In the previous
reporting period, a gate-dependent resistor network model was solved analytically to predict
that higher performance can be achieved by reducing nanosheet thickness to reduce current
crowding and interfacial resistance. In particular, surface potential profiles on a model
MoS2/MoS2 homojunction consisting of partially overlapped 8 layers were measured to
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Figure 3.7: (a) Optical microscope image of the graphene-contacted MoS2 photodetector. The
area used for scanning photocurrent microscopy (SPCM) mapping is highlighted with the blue
square. (b) The corresponding spatially resolved SPCM map of the scanned area. (c) Averaged
horizontal line profile of the photocurrent and relative integrated graphene (Gr) Raman intensity
derived from the SPCM image. (d) Current-voltage (I-V) characteristics under dark conditions of
the graphene-contacted MoS2 photodetector, revealing Ohmic behavior for voltages exceeding 0.1
V.

benchmark the model. An abrupt potential drop was observed where the top flake overlaps
with the buried edge, suggesting that near-edge resistances limit transport at the junction
due to weakly screened trapped charges. In this reporting period, Lauhon evaluated the
predictions of the analytical model by imaging MoS2/MoS2 homojunctions with different
thicknesses, extracted near-edge resistances by discretizing the resistor network model
to capture the measured potential profiles, and completed the physics-based model by
including experimentally constrained parameters to simulate the on-state performance
of printed 2D TFTs (Figure 3.9A). The edge and interface resistances created distinct
tradeoffs when optimizing the microstructure, thus informing ink processing. If transport
in the 2D network is limited by the near-edge resistance, the ink formulation must target
micron-sized nanosheets to optimize the effective mobility, and the printed film must have
a uniform nanosheet density to minimize device-to-device variations, which indicate that
the exfoliation, sorting, and printing processes are all critical to TFT performance. If
transport is limited by the inter-sheet resistance, then the microstructure generated by the
state-of-the-art liquid phase exfoliation and printing is sufficient. Our work suggests that
while exfoliation, ink formulation, and assembly processes have been developed to reduce
inter-sheet resistance by improving microstructure (i.e., decreasing nanosheet thickness
and increasing lateral size and overlap), in-situ and/or post-processing processes that
passivate the nanosheet edges should be prioritized next to reduce the near-edge resistance
by reducing the density of charged impurities.

By analyzing the potential drops in model transistors, the effective mobility and on-state
conductance of partially overlapping nanosheets were found to be limited by the resistance
produced by nanosheet edges due to their impact on carrier scattering and depletion.
To examine the impact of edge resistance on the optimal microstructure of printed 2D
TFTs, the effective mobilities µe f f of a device with a 10 µm channel were simulated
in relation to the nanosheet thickness, size, and density. A single-sheet mobility of 100
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Figure 3.8: (a) Spectral response of the graphene-
contacted MoS2 photodetector. (b) Responsivity
as a function of number of printing passes at 40
V using a 515.6 nm laser with an intensity of 7
x 10�5 W/cm2. All error bars indicate one stan-
dard deviation from the mean. (c) Responsivity
as a function of power. (d) Bending stability over
1000 bending cycles with a bending radius of 12
mm. (e) Time-dependent photocurrent at 20 V
and 515.6 nm illumination. (f) Responsivity and
response time comparison to all-printed visible
photodetectors previously reported in the litera-
ture.

cm2V�1s�1 was used to determine the optimal microstructure for achieving a target µe f f
of 10 cm2V�1s�1. The near-edge sheet resistance ratio RS,E /RS = 1000 and inter-sheet
resistivity ratio ri,E/ri = 10 were used, based on fitting experimentally measured potential
profiles. When transport is limited by the near-edge resistance, an optimal nanosheet
thickness is required (Figure 3.9B). Although thinner nanosheets reduce gate screening, the
screening of charged impurities is weakened, thus resulting in lower µe f f . Moreover, µe f f
increases monotonically with increasing lateral size due to the proportionally decreasing
contribution of the near-edge resistance to the total channel resistance. For a MoS2 TFT,
the optimal nanosheet thickness was found to be 6 layers (4.2 nm), giving an µe f f of 8.9
cm22V�1s�1 at the median density for a lateral size of 1.5 µm, which is at the high end of
liquid phase exfoliation. In contrast, the typical microstructure produced by liquid phase
exfoliation has a smaller impact on film performance if transport is limited by the inter-
sheet resistance. In this regime (i.e., RS,E /RS = ri,E/ri = 1), µe f f increases with decreasing
thickness due to reduced gate screening by thinner nanosheets (Figure 3.9B). The effective
mobility increases asymptotically with increasing nanosheet size, indicating that thinner
nanosheets decrease the device-to-device variation. Given a single-sheet mobility of 100
cm2V�1s�1, MoS2 nanosheets with a lateral size of 200 nm and a range of thicknesses
from 1 layer to 15 layers are sufficient to achieve a µe f f of 10 cm2V�1s�1.

While the nanosheet thicknesses and sizes can be optimized through improved exfoliation
and sorting, it is necessary to control the overlap and density by printing to minimize
device-to-device variations. If transport is limited by the near-edge resistance, there is a
general trend whereby µe f f decreases with increasing sheet density, the slope of which is
larger at smaller density, suggesting that while increasing nanosheet size and decreasing
density increases µe f f , the device-to-device variation becomes larger (Figure 3.9C). In
contrast, the variation due to density is reduced in the inter-sheet resistance-limited regime,
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Figure 3.9: (a) A resistor network model is
used to simulate the on-state device charac-
teristics of a two-nanosheet system containing
fixed charge at flake edges. RT and RB rep-
resent the gate-dependent sheet resistances of
the top and bottom nanosheets, respectively.
ri represents the specific inter-sheet resistiv-
ity. The near-edge resistivities are greater
than those in the middle of the junction. (b)
Effective mobility µe f f ,med versus nanosheet
thickness NML (i.e., number of monolayers per
nanosheet) and length LS at the median den-
sity DS (i.e., number of nanosheets per channel
length) for a particular LS. (c) µe f f versus DS
and LS for devices consisting of 6 layers. The
solid lines represent the near-edge resistance-
limited regime where the near-edge sheet re-
sistance ratio RS,E/RS = RT,E/RT = RB,E/RB =
1000 and inter-sheet resistivity ratio ri,E/ri =
10, while the dashed lines represent the inter-
sheet resistance-limited regime where RS,E/RS
= ri,E/ri = 1. The color scale represents LS =
200 nm-1.5 µm. The channel length is 10 µm.
The single-sheet mobility is 100 cm2V�1s�1.

which is reflected by the smaller slope in the decrease of µe f f with density (Figure 3.9C).
At lower density/smaller overlap, the junction resistance is limited by the inter-sheet
resistance, resulting in a sharp decrease in µe f f with decreasing density, which indicates
that film assembly/printing processes must be optimized to ensure sufficient coverage.

3.2.5 Designing Edge-Selective Functionalization to Improve Printed 2D Transistor
Performance
Informed by the discovery that near-edge resistances limit transport at flake-flake junctions,
Lauhon initiated an effort to design functionalization schemes for improving 2D ink
performance in collaboration with Marks. Specifically, the effects of functional groups on
the local structure and electronic properties of model MoS2 homojunctions with an exposed
step edge were considered (Figure 3.10A). Since sulfur vacancies have been observed
to dominate the edges of MoS2, initial attempts utilized a-lipoic acid, which contains a
1,2-dithiolane functional group that was predicted to covalently bind to sulfur vacancies.
After 48 hours of functionalization in a-lipoic acid performed by Marks, the molecule
was found to functionalize both the basal plane and edges of MoS2 (Figure 3.10A, Figure
3.10B). Lauhon then used Kelvin probe force microscopy to measure the change in surface
potential after functionalization. Before functionalization, the contact potential differences
of 5 layer and 4 layer flakes are equal (Figure 3.10C), suggesting that they both reach
the flat-band condition (Figure 3.10E). The surface band bending of few-layer MoS2 was
modified after functionalization, where the work function of 5 layer flakes became higher
than 4 layer flakes by 60 meV (Figure 3.10D). A likely explanation is that the molecules
are passivating the sulfur vacancies on the surface of MoS2, lowering the Fermi level and
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increasing the work function (Figure 3.10F). As a next step, additional edge-selective
functionalization schemes will be explored by strategically designing interactions of the
molecule with edge sites and basal planes. For example, molecules with functional groups
attached to long, non-polar chains are expected to chemically react with edge sites but only
physisorb on the basal plane.

Figure 3.10: (a) AFM topography and (b) phase images of a 5 layer/4 layer junction after 48 hours
of functionalization in a-lipoic acid. The schematic shows the molecular structure of a-lipoic acid,
which contains a 1,2-dithiolane functional group. Kelvin probe force microscopy (KPFM) contact
potential maps (c) before and (d) after functionalization, showing that the work function of the 5
layer flake became higher than the 4 layer flake. Schematics of the proposed surface band bending
(e) before and (f) after functionalization.

3.2.6 Diazonium Functionalization of 2D Indium Monoselenide
In this effort, Marks collaborated with the Hersam to investigate the covalent functional-
ization and passivation of InSe flakes with 4-bromobenzene diazonium (Figure 3.11). A
range of surface characterization techniques demonstrated that diazonium salts react with
InSe, forming a covalently bound organic layer on the semiconductor surface. The struc-
ture of this layer can be tuned by varying the reaction conditions and by adding ascorbic
acid or other reducing agents, which alter the reactivity of the diazonium salt. The use
of a reducing agent (mediated reaction) was found to suppress side reactions that lead to
multilayer growth, thus affording a smoother film compared to the non-mediated reaction
(Figure 13.11A, Figure 3.11B). This result is the first example of covalent functionalization
of InSe using organic reagents. Chemical modification of InSe sheets offers a way to
tune their chemical, optical, and electronic properties. Importantly, this approach is also
compatible with solution processing of InSe, allowing flakes to be modified in an ink
before printing the semiconductor and fabricating devices.

To study the passivation and doping effects of diazonium functionalization, single-flake
InSe TFTs were fabricated using a lithography-free shadow mask process (Figure 3.12).
Upon functionalization, these n-type transistors retain high mobilities (102 �103cm2/V s)
and on/off ratios (> 106). A slight drop in performance can be mitigated by limiting the
reaction time to achieve a lower level of functionalization. The charge transport data
indicate that diazonium chemistry modifies the surface of InSe without negatively affecting
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the electronic performance, thus demonstrating that this chemical modification scheme is a
promising strategy for passivating InSe in 2D inks.

Figure 3.11: Reaction schemes for the non-mediated (a) and ascorbic acid mediated (b) reactions
of 4-bromobenzene diazonium with InSe. AFM images of an InSe flake before (c) and after (d) the
non-mediated reaction, demonstrating the formation of a 2 nm thick layer on the semiconductor
surface. (e) Br 3d X-ray photoelectron spectrum of InSe functionalized by the non-mediated
process, indicating the presence of bromophenyl groups in the surface layer. (f) AFM image of an
InSe flake after mediated functionalization shows a smoother organic layer compared to (d).

Figure 3.12: (left) Structure of the InSe TFTs used in this study. (right) TFT transfer characteristics
for various functionalization reaction times (non-mediated reaction).

3.2.7 Trifluoromethylation Based Passivation of 2D Semiconductors
In this project, Marks explored trifluoromethylation of 2D materials for the first time.
Hydrophobic trifluoromethyl groups are expected to protect the surface of 2D materials
from ambient water and oxygen while acting as a p-type surface dopant through a strongly
withdrawing inductive effect. In collaboration with Hersam, trifluoromethyl thianthrenium
triflate (TTT), a versatile new reagent developed for the fluoroalkyl functionalization of
organic molecules, was used to functionalize a variety of 2D materials with trifluoromethyl
groups. AFM and XPS measurements indicate that TTT deposits trifluoromethyl groups
on the surface of 2D chalcogenides, namely MoS2, WSe2, and InSe (Figure 3.12). These
reactions proceed under mild conditions and afford a dense surface layer of trifluoromethyl
groups. Importantly, Raman spectroscopy indicates that this reaction does not affect the
crystal structure of the functionalized semiconductor. Optical characterization of the
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functionalized semiconductors indicates that trifluoromethylation of the surface modulates
the optoelectronic properties of the material. Both MoS2 and WSe2 exhibit considerable
photoluminescence quenching following the reaction, which persists after mild thermal
annealing. These results provide further evidence for covalent functionalization of the 2D
flakes. Tuning the reaction conditions with TTT may allow for deposition of trifluoromethyl
groups on other 2D materials beyond chalcogenides, as well as controlling the structure
and density of the surface layer.

Figure 3.13: (a) Chemical structure of TTT and scheme of the trifluoromethylation reaction resulting
in the grafting of CF3 groups on MoS2, WSe2, and InSe. AFM of pristine (b) and functionalized
MoS2 (c), showing the deposition of a dense surface layer. Scale bars = 500nm. (d) C1s and (e)
F1s XPS scans showing signature peaks corresponding to CF3 on MoS2.

3.2.8 Computational Design of Heterostructure Materials for Printed 2D Semicon-
ductor Photodetectors
MoS2 is a well-known and widely used semiconductor for photodetectors due to its large
optical absorption coefficient and efficient carrier generation upon photoexcitation. Re-
cently, multiple heterostructures have been reported in the literature where monolayer
MoS2 is interfaced with another 2D semiconductor to form heterojunctions that improve
photoresponse time and photoresponsivity. In an effort to computationally screen optimal
2D heterojunctions for photodetectors, several of the Ruddlesden-Popper (RP) halide per-
ovskites of the form Cs2XY2Z2 (where X is a transition metal while Y and Z are halogens)
were investigated by Wolverton group based on their photodetection-related performance
when incorporated into heterostructures with monolayer MoS2 (Figure 3.14) using density
functional theory (DFT). Several properties of the resulting heterostructures were computed
including electronic band structure, in-layer carrier transport properties, interfacial charge
transport characteristics, and optical absorption coefficients. These properties together
provide a reliable estimate of the heterostructure photodetection capabilities. Out of more
than 140 RP-MoS2 lattice stackings, 87 cases were identified to form a heterostructure
with a minimal level of lattice strain (<5%).
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Figure 3.14: (left) Heterostructures are considered computationally from a cleaved Ruddlesden-
Popper perovskite structure and monolayer MoS2. (rights) A few representative heterostructures
that were created using lattice-alignment methods.
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4.1 Design Goals

The Grain Boundary and Interface Engineering in Thermoelectrics Use Case group seeks
to apply developments in space-age technology to transform the cooling industry through
thermoelectric materials enhancement. We seek to develop high-efficiency thermoelectric
materials by improving the thermoelectric figure of merit, zT , which requires increasing
electronic mobility and reducing thermal conductivity.

By applying an integrated computational-experimental approach, the use case group aims
to improve the efficiency of thermoelectric materials by improving the figure-of-merit
zT , particularly near room temperature. Optimization of zT requires increasing charge
carrier mobility while reducing the thermal conductivity and is an inherently a multi-
scale problem. The atomic structure and composition of the material will determine the
electronic structure, and largely defines important intrinsic material properties like Seebeck
and conductivity effective mass. The carrier concentration must then be optimized through
extrinsic doping. The choice of dopant is determined by its solubility, doping efficiency,
and its potential deleterious effects on carrier mobility. Finally, the nano-/microstructure
generated by the defect and strain state of a material can determine the speed and lifetime
of heat-carrying lattice vibrations. The system design chart below shows the relationship
between processing steps and properties in addition to the interrelatedness of thermoelectric
properties that leads to a challenging optimization problem. In our use case, the use-case
group heavily relies on first-principles theory and analytic physics-based modelling to
understand each of the connections shown in the System Design Chart in Figure 4.1.

Another unique attribute of thermoelectric research is the large body of existing literature
and high-throughput DFT data available, which has recently become available through
open-sourced databases including: (1) StarryData2, developed by University of Tokyo
and National Institute of Materials Science, Japan (https://www.starrydata2.org)
and; (2) the MPContribs Carrier Transport Database co-developed by Snyder (https://

https://www.starrydata2.org
https://contribs.materialsproject.org/projects/carrier_transport/
https://contribs.materialsproject.org/projects/carrier_transport/
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contribs.materialsproject.org/projects/carrier_transport/). The use-case
group members heavily rely on this body of data both for new materials discovery and as a
test bed for our analytic physics models.

Additionally, the principles developed here both about engineering electrical and thermal
transport as well as phase equilibria in multicomponent semiconductors are applicable be-
yond thermoelectrics. For example, the group’s investigations into heat-carrying vibrations
are not only useful for decreasing the thermal conductivity in a thermoelectric module,
they may also be used to optimize switchable thermal properties in the development of a
thermal diode.

Figure 4.1: The System Design Chart for the Grain Boundary and Interface Engineering in
Thermoelectrics use case group

4.2 Research Accomplishments

The accomplishments of the Grain Boundary and Interface Engineering in Thermoelectrics
use case group in 2021 are as follows:

4.2.1 Phase Boundary Mapping

The energetics of defects play a key role in determining the shape of the phase boundaries.
Given the dependence of properties such as carrier concentration and Seebeck coefficient
on the location of phase diagram in which the compound lines, part of our 2021 research
efforts focused on understanding how the energetics of defects shape the phase diagram. We
further outlined how slight variations in nominal and actual compositions of experimental
compounds may occur due to the chemical conditions present during processing which
may lead to marked differences in expected and realized properties of the compounds.
Subsequently, we detailed how the choice of chemical conditions can be used to tune
defect concentrations and thus the solubilities of dopants to realize the maximum solubility
in the system.

https://contribs.materialsproject.org/projects/carrier_transport/
https://contribs.materialsproject.org/projects/carrier_transport/
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Figure 4.2: The phase diagram zoomed into
the ZnSb composition shows four distinct three-
phase regions accessible by doping ZnSb with
Sn. The defect concentrations, and subsequently
the charge carrier concentrations, in ZnSb will be
different in each region. The compositions of the
four samples presented in this study are indicated
by the four points in the phase diagram.

4.2.2 Mechanical Properties of Thermoelctric Materials
Dislocations and the residual strain they produce are instrumental for high thermoelectric
figure of merit, in lead chalcogenides. However, these materials tend to be brittle, barring
them from practical green energy and deep space applications. Nonetheless, the bulk of
thermoelectrics research focuses on increasing ZT without considering mechanical perfor-
mance. Optimized thermoelectric materials always involve high point defect concentrations
for doping and solid-solution alloying. Brittle materials show limited plasticity (dislocation
motion), yet clear links between crystallographic defects and embrittlement are hitherto
unestablished in PbTe. In recent work, we identified links between dislocation/point-defect
interactions and brittleness through Vickers microhardness measurements in single crystal
and polycrystalline PbTe samples with varied dopants. Varied routes of point defect-
dislocation interaction restrict dislocation motion and drive embrittlement: Dopants with
low doping efficiency cause high defect concentrations, interstitial n-type dopants (Ag and
Cu) create highly strained obstacles to dislocation motion, and highly mobile dopants can
distribute inhomogeneously or segregate to dislocations. These results illustrate the con-
sequences of excessive defect engineering and the necessity to consider both mechanical
and thermoelectric performance when researching thermoelectric materials for practical
applications.

4.2.3 Thermal Transport
Both within-grain and interfacial dislocations play an important role in modulating thermal
transport. Dislocations perturb phonon transport both through the bond disregistry at the
dislocation core but also through the long-range strain fields, which induce both anharmonic
phonon scattering as well as lattice softening (speed of sound reduction) effects. In 2021,
the Snyder group assessed the role of dislocations in thermal transport from the standpoint
of theory, experiment, and computation. From a theory standpoint, a continuum-level
model was developed to predict the interfacial thermal resistance of low-energy interfaces
that are composed of dislocation arrays. By accounting for the phonon scattering due to
the periodic strain fields produced by these interfacial dislocations, we describe a novel
type of phonon scattering at an interface, termed diffractive scattering. As shown in Figure
4.4 below, the diffractive scattering models sits between two common approximations
for phonon scattering at an interface: 1) the acoustic mismatch model which assumes
specular reflection or transmission and 2) the diffuse mismatch model which assumes
fully diffuse scattering. Instead, in this work, the dislocation array at the interface acts
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Figure 4.3: Measured Vickers microhardness at different n and p-type Hall carrier concentrations
(nH) for single crystal ((100) face) and polycrystalline PbTe samples with varied dopants of
different ionic sizes. By inspection, crystallinity and ionic size are shown to be insignificant for
the defining hardness trend. Samples that were phase boundary mapped to fix intrinsic defect
concentrations are colored blue (low intrinsic defects "uncompensated") or orange (high intrinsic
defects/"compensated"). Some clear deviations from literature trends are shown, demonstrating
where interstitial dopants (n-type Cu and Ag) and low doping efficiency samples (p-type samples
with K, Ag and I) lead to high hardness.

as a diffraction grating for phonons, leading to certain allowed phonon transitions at the
interface. This work reproduces trends observed in experiment and simulation (but not
captured in previous analytic theory) between interfacial thermal resistance and grain
boundary type and angle.

Figure 4.4: Schematic illustrations of phonon-interface scattering models. (a) The acoustic mis-
match model across leads to a specular reflection or transmission in analogy to Snell’s (b) Our model
treats the periodic arrays of dislocations present at many low-energy interfaces. The dislocation
array can impart quantized momentum in units of 2piD, where D is the dislocation spacing. (c)
Interfaces serve as a sink for point defects, leading to additional roughness and compositional
disorder. In a case of maximal roughness, one can apply the diffuse mismatch model in which the
only conserved quantity across the interface is phonon energy.

Molecular dynamics simulations were also used to assess the phonon scattering due
to dislocation core and strain effects, separately. With the applied periodic boundary
conditions, the dislocations investigated were also arranged in arrays forming low angle
grain boundaries. The simulations revealed that dislocation strain is particularly effective
in scattering mid-frequency phonons, which constitute a difficult-to-target range of the



4.2 Research Accomplishments 35

phonon spectrum. Other scattering effects such as phonon-phonon interactions and point
defect scattering tend to target high-frequency phonons, while simple boundary scattering
targets the low-frequency phonon range. Finally, atom probe tomography measurements
of dislocations in PbTe (see Figure 4.5) revealed the importance of compositional variation
near the dislocation core in phonon scattering. Dopant segregation at the dislocation core
led to increased phonon scattering, which was explained as modified lattice anharmonicity
in the vicinity of the dislocation.

Figure 4.5: Atom probe tomography showing Na dopant segregation to dislocation cores. a)
ABF-STEM image of a needle-shaped APT specimen. Iso-composition surfaces of 2 at% Na are
highlighted in green, and dislocations are indicated by arrows. b) Magnified image of the bottom of
the needle showing the atomic distribution of Na in the vicinity of a dislocation. c) Composition
profile near the dislocation core showing the formation of Na-rich atmosphere.

4.2.4 Investigation of Weak-bonding Elements’ Influence on Thermoelectric Trans-
port
By screening the Open Quantum Materials Database (OQMD, www.oqmd.org) with SnS2-
adjacent phase diagram, Wolverton group found two compounds with SnS2 analogue
crystal structure, BaSnS3 and SrSnS3, where Ba and Sr form weak bonding with Sn-
S framework. The crystal structure of BaSnS3 is shown in Figure 4.6. Analyzing the
two compounds help us understand the influence of weak-bonding elements in highly
symmetric polarized systems resembled SnS2. Ba and Sr disturb the bonding between
Sn-S, neutralize the polarity of Sn-S ionic covalent bonding, leading to the delocalization
of free electrons, and thus the increase of carrier mobility. Structural distortion induced by
Ba and Sr also results in differentiation of S, which contributes to the splitting of valence
band edge and triggers band convergence. Regarding the heat transport, Ba and Sr soften
the lattice and enhance the lattice anharmonicity. More importantly, their weak coherence
with Sn-S matrix give rise to local vibration, which induces strong acoustic-optical phonon
coupling, significantly increase the phonon scattering rate in the system. In all, our full-
scale thermoelectric transport properties calculations based on non-empirical carrier and

www.oqmd.org
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Figure 4.6: Crystal structure of BaSnS3. On the right are full-scale calculated electrical and thermal
transport properties of p-type BaSnS3 with respect to hole concentration or temperature.

phonon relaxation time reveal the synergic optimization on electrical conductivity, Seebeck
coefficient, and lattice thermal conductivity compared to SnS2, which eventually leads to
the promising calculated ZT ⇠ 3.0.

4.2.5 Rapid Screening of Low Thermal Conductivity Materials using Chemical
Bonding Principles
Semiconductors with very low lattice thermal conductivities (kL ) are highly desired for ap-
plications relevant to thermal energy conversion and management, such as thermoelectrics
and thermal barrier coatings. In this project, Wolverton group presented effective strate-
gies to induce low lattice thermal conductivity using chemical bonding principles. This
strategy is based upon weakening the interatomic interactions and therefore suppressing
lattice thermal conductivity in materials. Utilizing the new chemical bond principles, they
demonstrated a high-efficiency approach of discovering low kL materials by screening the
local coordination environments of crystalline compounds. First-principles calculations
uncover 30 hitherto unexplored compounds with (ultra)low lattice thermal conductivi-
ties from 13 prototype crystal structures (Figure 4.7) contained in the Inorganic Crystal
Structure Database. In addition, they also presented an approach of rationally designing
high-performance thermoelectrics with the incorporation of cations with stereochemically
active lone-pair electrons.
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Figure 4.7: Newly discovered prototype structures with low thermal conductivity and lattice thermal
conductivities of the compounds as a function of average speed of sound.





5. Design of Properties of Polyelectrolyte Complexes
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5.1 Design Goals

The integrated goals of this Use Case constitute what we call the 8M program: Molecules,
Mixtures, Micelles, Materials, Measurement, Moduli, Modelling, Manufacturing. We use
custom-synthesized macromolecules (M1) to study the phase diagrams of complexation
in mixtures (M2) of polyelectrolytes and to exploit the micellar (M3) self-assembly
possibilities resulting from interaction of charged macromolecules. Self-assembly via
complexation is being used to create micelles, encapsulating materials, hydrogels, coatings,
and composite materials, all based on charge complexation and ionic interactions as the
underlying mechanisms. (M4). Data on phase behavior and micellization routes to new
materials are input into searchable databases. Rheological measurement (M5) gives insight
into moduli (M6), viscosity, and other viscoelastic properties. Predictive modelling and
simulation (M7) of both phase behavior and self-assembly is increasingly advanced. This
fundamental work is input into processing and eventually manufacturing, methods (M8)
for soft materials based on electrostatic complexation. The ultimate goal is to write down
the structure of a set of synthesizable charged macromolecules and, from that structure, be
able to know with confidence the properties of the final material, and then, with deeper
insight, to do the reverse.

The Use Case is mapping out the phase behavior space of polyelectrolyte complexes and
bringing advanced theoretical and computational methods into play to deliver predictive
design insight for these materials. The system design chart in Figure 5.1 shows the
processing-structure-properties-performance work flow for the Design of Properties of
Polyelectrolyte Complexes Use-Case Group.
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Figure 5.1: Systems design chart for soft matter design based on charged macromolecules

5.2 Research Accomplishments

5.2.1 Processing polyelectrolyte complexes with deep eutectic solvents
Polyelectrolyte complexes (PECs) formed from mixtures of polycations and polyanions
are useful in a variety of applications and can be processed by the addition of salt. Salt
mediates the ionic interactions within the polyelectrolyte complexes, with appropriately
chosen salts enabling complete dissolution of solid PEC in aqueous media. Substantial
complications arise from the crystallization of the salt during subsequent processing steps.
Shull group has shown that appropriately chosen noncrystallizing deep eutectic solvents
can be used to process solid PECs. Mixtures of ethylene glycol and guanidine thiocyanate
are used for a particularly effective deep eutectic solvent. The phase behaviors of this deep
eutectic system and of its mixtures with a model polyelectrolyte complex were quantified.

5.2.2 Diffusion in dense polyelectrolyte systems
Previous and ongoing efforts in this Use Case have mapped the thermodynamics, self-
assembly, and interfacial properties in polyelectrolytes. The work in Phase II will now
explore dynamic properties, including rheology and diffusion, with the goal of tabulating
them into databases to speed materials design for other users. For example, understanding
diffusion is important for designing the transport and delivery of drugs and therapeutics.

Wang contribution to this effort is through the measurement of polyelectrolyte diffusion in
solutions and complexes. We are using advanced optical techniques called single-particle
tracking (SPT), where videos of fluorescently-labeled species are acquired on an optical
microscope. By analyzing these videos, we can then determine the real-time positions
of single polymer chains to tens of nanometer precision and millisecond time scales.
Further analysis can determine mean-squared displacements and van Hove distributions
to extract diffusion coefficients. Additionally, SPT can examine heterogeneous diffusion,
i.e. when some polymer chains are more mobile than others, when single polymers switch
between mobile and immobile states, when diffusion is non-Fickian, etc. Such behavior is
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potentially possible in polyelectrolyte complexes, as these systems are highly interacting
and these associations provide many physical barriers to unrestricted Brownian motion.

Figure 5.2: A) Mean-squared displacement vs. time of various concentrations of poly(D,L-lysine)
hydrobromide in water. B) The exponents of MSD vs. t at the different concentrations. Data from
(A) is labeled as “pH 4,” as this was the native pH when the polymer was dissolved in pure water.
“Low salt” was when the HBr was removed by ion exchange chromatography. “High salt” was
when 1 M of NaCl was added.

During this reporting period, our group has successfully performed SPT on concentrated
polyelectrolyte solutions and shown strong evidence for sub-diffusive non-Fickian diffusion
behavior. Using solutions of poly(D,L-lysine) in water, where a small fraction of the
polymers were labeled with a Cy3 fluorophore, we found that mean-squared displacement
(MSD) vs. time showed power law behaviors that were significantly less than one, at
concentrations of 60 wt% and above. We further explored this behavior under various
pH and salt concentrations, and it seems to be universal over all conditions. Preliminary
experiments on concentrated solutions containing both poly(D,L-lysine) and poly(D,L-
glutamic acid) (coacervates) show similar behavior. These results are quite surprising,
as sub-diffusive behavior suggests that there are obstacles hindering free motion of the
polymers, yet the length scales of this phenomenon seem to extend into 102-103 nm, which
is much larger than the size of the polymer chains. It may be related to literature that
has suggested long-range correlations and multiple modes of diffusion in polyelectrolyte
solutions. We are verifying this phenomenon by collecting even more conditions, and also
conducting parallel studies of structural heterogeneity using small-angle neutron scattering
(SANS).

An important control experiment for the polyelectrolyte solutions is to also measure neutral
polymers. Using aqueous solutions of a custom-synthesized poly(oligoethylene glycol
methacrylate) (PEGMA), we have largely not seen the subdiffusive behavior that was
present in the polyelectrolyte systems. Instead, our work has shown a bifurcation in the
population of MSD vs. time trajectories. This is a strong indication of the coexistence of
slow- and fast-diffusing species within our system. The diffusion of both of these species
becomes slower with increasing concentration, and obeys the expected scaling relationships.
We hypothesize that this two-species effect arises due to hydrophobic clustering of the
methyl end groups on the PEG side chains, as seen in prior literature. This was confirmed
by SPT experiments in methanol, where the clustering effect is attenuated.
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Figure 5.3: MSD vs. time of individual trajectories of PEGMA in water at concentrations of A)
30 wt%, B) 40 wt%, C) 50 wt%, and D) 60 wt%. The red and blue dotted lines are linear fits to
populations above and below the bifurcation. E-H) Histograms of the MSD values at 20 and 120
ms are shown at the various concentrations, with a fit of the expected probability distributions for
two independently diffusing species.

5.2.3 Modeling-based design to engineering protein hydrogels with random copoly-
mers
Inside living organisms, protein enzymes participate in vital processes and perform nu-
merous chemical reactions. In addition, protein enzymes possess a great technological
potential. The operation of protein enzymes in technological applications is often required
at high temperature, high or low pH, and in organic solvents. In such harsh conditions,
however, enzymes undergo denaturation leading to a loss or decline of their activity. Thus,
new methods are necessary to preserve the enzymes’ functionality outside their native
environment. Polymers are promising as supporting materials to immobilize, stabilize, and
preserve the enzymatic activity of protein enzymes. In particular, charged polymers offer
a simple way to control the direct enzyme-polymer self-assembly using the electrostatic
interactions. In addition, ion-containing polymers have important applications in energy
storage and conversion, and in water purification and gas separation membranes, to name a
few. Using coarse-grained molecular dynamics simulations, the Olvera de la Cruz group
(ACS Nano 15, 16139-16148 (2021)) performed a modeling-based design to engineering
hydrogels formed by the enzymes cytochrome P450 and PETase and the random copoly-
mers of styrene/2-vinylpyridine (2VP)1 (see Figure 5.4a,b). By tuning the copolymer
fraction of polar groups and of charged groups via quaternization of 2VP for coassembly
with cytochrome P450 and via sulfonation of styrene for coassembly with PETase, we
provide quantitative guidelines to select either a protein-polymer hydrogel structure or
a single-protein encapsulation. Regardless of the protein surface domains, we find that
the presence of polar interactions and hydration effects promote the formation of a more
elongated enzyme-polymer complex, suggesting a membrane-like coassembly (see Figure
5.4c). In addition, we observe single-protein encapsulation by decreasing the fraction of
polymer polar groups and at charge fractions below 15%. According to our computational
analysis, the hydrophobic interactions promote the enzyme-polymer assemblies, which
lead the protein nonpolar residues to achieve the maximum coverage and to play the
role of the most robust contact points. The mechanisms of coassembly are unveiled in
the light of both protein and polymer physical-chemistry, providing bioconjugate phase
diagrams for the optimal material design. According to the computational analysis, the
hydrophobic interactions promote the enzyme-polymer assemblies, which lead the protein
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Figure 5.4: Coarse-grained models
and simulation setup. (a) Cytochrome
P450 and PETase enzymes in both
all-atom (AA) and Martini coarse-
grained representations. (b) The sup-
porting materials are polymers formed
by four monomers (shown in all-atom
(AA) and coarse-grained (CG) repre-
sentations). The negatively charged
(-15e) P450 is combined with neu-
tral polar PS-2VP (i) and positively
charged (PS-Q2VP (ii) and PS-2VP-
Q2VP (iii)) random copolymers. The
positively charged (+6e) PETase is
coassembled with neutral polar PS-
2VP (i), and negatively charged (PSS
(ii) and PSS-2VP (ii)) heteropolymers.
The fp and fc fractions are tuned by
altering the number of polar (Npolar)
and charged (Ncharged) monomers, re-
spectively, over the total number of
monomers (Ntot = 60) in one single
polymer chain. (c) Phase diagram
of polymer-P450 enzyme complexes.
By tuning the polymer polar ( fp) and
charged ( fc) fractions, we identify
three main modes: (i) the membrane-
like coassembly displayed with dark
green points, (ii) the single-protein en-
capsulation marked with light green
points, and (iii) the weak encapsula-
tion depicted with yellow points.

nonpolar residues to achieve the maximum coverage and to play the role of the most robust
contact points. The mechanisms of co-assembly are unveiled in the light of both protein
and polymer physical-chemistry, providing bioconjugate phase diagrams for the optimal
material design.

5.2.4 Probing the size-dependent polarizability of mesoscopic ionic clusters and
their induced-dipole interactions
Ionic clusters composed of oppositely charged mobile species are present in a wide variety
of applications including heavy-metal emulsions for recycling and separations, ionomer
melts for energy storage, and protein-polymer and protein-colloid nano-assemblies for
biocatalysis. Controlling the stability and aggregation of these ionic clusters in solution
is of paramount importance in a number of processes and therefore it is necessary to
understand their interactions. The polarizability is the ability of the cluster’s charges to
re-arrange in response to an external electrical field. The cluster’s polarizability determines
the effective interaction between the clusters. To understand how the interactions between
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ionic clusters are affected by their polarization, the Olvera de la Cruz group investigated
different systems of mesoscopic polarizable electrically neutral clusters using coarse-
grained molecular dynamics simulations (J. Chem. Phys. 155, 194901 (2021)). It is found
that the polarizability of the ionic clusters decreases as the number of constituent charges
increases and/or their Coulombic interaction strength increases for various ion valences,
ion densities, and degrees of cluster boundary hardness. Similarly, the polarizability of
clusters formed by random ionomers and their counter ions changes with the number of
polymer chains.

Figure 5.5: Coarse-grained (MARTINI) simulation of two polyelectrolyte clusters in polarizable
water. (a-c) Two clusters 1 and 2 containing 48 and 132 charged pairs, respectively, merge into a
single droplet after 20 ns. (d-f) Clusters 3 and 4 containing 264 and 1224 charged pairs, respectively,
repel each other when they come in contact and remain their entity after more than 120 ns.

Neutral ionic clusters containing a small number of charges are highly polarizable and
therefore are attracted towards a larger cluster containing more charges. Figure 5.5
(J. Chem. Phys. 155, 194901 (2021)) contains snapshots from molecular dynamics
simulations showing the interaction between two ionic clusters. Figure 5.5a-c, correspond
to a simulation of the two clusters that have a small number of charges. At t = 0, the clusters
are separated. During the simulation, the clusters attract to each other and merge to form a
single larger cluster. On the contrary, in clusters containing a larger number of charges the
induced-dipole interactions decrease substantially leading to repulsive interactions. Figure
5.5d-f, correspond to a simulation of two clusters that have a large number of charges. The
clusters may approach due to the forces exerted by the surrounding liquid, however, at short
distances they repeal due to the dipole-induced interactions. Therefore, it is concluded that
the dipole-induced interactions can serve as a counterbalancing force that contributes to
the self-limiting aggregation of charge-containing assemblies.

5.2.5 A perspective on the design of ion-containing polymers for polymer elec-
trolyte applications
Ion-containing polymers have numerous potential applications as energy storage and
conversion devices, water purification membranes, and gas separation membranes, to name
a few. Given the low dielectric constant of the media, ions and charges on polymers in a
molten state interact strongly producing large effects on chain statistics, thermodynamics,
and diffusion properties. In this perspective (J. Phys. Chem. B 125, 3015-3022 (2021))
the Olvera de la Cruz group we discuss recent research accomplishments on the effects
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of ionic correlation and dielectric heterogeneity on the phase behavior of ion-containing
polymers and the progress made in studying ion transport properties in these material
systems. Charged block copolymers (BCPs), among all kinds of ion-containing polymers,
have a particular advantage owing to their robust mechanical support and ion conducting
paths provided by the segregation of the neutral and charged blocks. Coulombic interactions
among the charges play a critical role in determining the phase segregation in charged
BCPs and the domain size of charge-rich regions (see Figure 5.6, J. Phys. Chem. B
125, 3015-3022 (2021)). We show that strongly charged BCPs display ordered phases
as a result of electrostatic interactions alone. In addition, bulky charge-containing side
groups attached to the charged block lead to the formation of morphologies that provide
continuous channels and better dissociation for ion conduction purposes. Finally, a few
avenues for designing ion-containing polymers for energy applications are discussed.

Figure 5.6: Hexagonal cylinder phase formed in charged deblock copolymers represented by
pendant model consisting of NA = NB = 20 charged and neutral blocks, respectively. The Flory-
Huggins parameter is in the range of 0 < cAB < 10.2 and the electrostatic interaction is given
by a Bjerrum length of lB = 10s , where s is the diameter of the polymer beads. The gray box
is the actual simulation box, it is replicated twice in all three directions for better display. (a)
Hexagonal cylinder phase where pink beads represent backbone monomers in charged block, green
beads represent side charge group, yellow beads represent counterions, and blue beads represent
monomers in the neutral block. (b) Cylinders consisted of neutral block monomers.

5.2.6 Polyelectrolyte complex phase behavior
In the studies of phase behavior, the emphasis this year has been on the role of charge
density, specifically, understanding complexation behavior at very low charge density.
Tirrell group created a new synthetic system based on random copolymers of PEO and
polyallylglycidal ether, Figure 5.7 (left), in which we could functionalize the pendant
double bonds with either charge. Figure 5.7 (right), shows the resulting experimental
binodal phase diagrams for PECs with charge fraction f = 0.30–1.0 and total CP = 10
mg/mL.

As anticipated, the two-phase region shrinks with decreasing charge density. We would
like to go to even lower charge density, since that is a region where we could compare with
theory, but for polymers of the chain length in the figure above (degree of polymerization
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Figure 5.7: (Left) Tirrell group created a new synthetic system based on random copolymers of
PEO and polyallylglycidal ether, in which they could functionalize the pendant double bonds with
either charge. (Right) The resulting experimental binodal phase diagrams for PECs with charge
fraction f = 0.30-1.0 and total CP = 10 mg/mL.

about 200), no phase separation was observed for f < 0.3.

5.2.7 Polyelectrolyte complex micelle design
In work on PEC micelles, Tirrell group has succeeded in determining the scaling laws that
allow us to determine in advance and design micelles with specific size characteristics. This
is useful information when the micelles are to be used to carry, for example, a therapeutic
payload. As Figure 5.8 portrays, Tirrell group has used synchrotron x-ray scattering at
the APS at Argonne to determine the radius of the electron density rich micellar core
and dynamic light scattering in our lab to determine the hydrodynamic radius, which
corresponds to the radius from the center to the periphery of the micelle.

Figure 5.8: Characterization of structure of micelles using X-ray scattering and dynamic light
scattering.

The data presented in Figure 5.9 show that the size of the payload-carrying core is fairly
insensitive to the sizes of the corona block (A) and of the homopolymer (B) payload but is
quite sensitive to the size of the B block in the block copolymer, varying with something
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like the 0.75 power. This is new information that can be brought into play in various
applications of PEC micelles.

Figure 5.9: Micelles in application: Relations between size of the payload-carrying core (Rcore) to
the sizes of the corona block (A) and of the homopolymer (B) payload but is quite sensitive to the
size of the B block in the block copolymer.
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6.1 Design Goals

This Directed Self-Assembly of Soft Matter Systems use-case group seeks to design block
copolymer materials and assembly processes to enable manufacturing via DSA at length
scales of 10 nm, scaling to 5 nm, and meet manufacturing constraints with respect to
defects (0.01/cm2), and line edge and width roughness (<1 nm). The structure of the
assembled BCP depends on many variables describing material properties (molecular
weight, block architecture, interaction parameter (c) and process parameters (tempera-
ture, solvent, assembly time, template chemistry and topography, interfacial energies, and
surface energies); our design objectives can only be met by developing and validating pred-
icative multi-scale models. Moreover, the immense parameter space requires evolutionary
approaches to simultaneously understand and optimize so many variables, in the context
of analysis of experimental data and in the design of new materials and processes.

The system design chart in Figure 6.1 shows the processing-structure-properties-performance
work flow for the Directed Self-Assembly of Soft Matter Systems Use-Case Group.

6.2 Research Accomplishments

The accomplishments of the DSA use case group in 2021 are as follows:

6.2.1 Resonant Soft X-ray Reflectivity Measurements of A-b-(B-r-C) Copolymers
In collaboration with staff scientists at NIST, the Nealey group studied the self-assembly
behavior of the synthesized A-b-(B-r-C) copolymers with resonant soft X-ray reflectivity
(RSoXR). By using soft X-rays with energies near the absorption edges of elements present
in polymers, such as Carbon and Oxygen, the X-ray contrast between the two polymer
blocks can be easily tuned to distinguish the lamellar features in polymer thin films. The
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Figure 6.1: Systems design chart for Directed Self-Assembly of Soft Matter Systems

interface width (wM), or degree of mixing between the two polymer blocks, as well as the
lamellar spacing (L0) of each polymer blocks in thin films was measured as a function
of fC for copolymer systems synthesized by RAFT and living anionic polymerization.
The measured values of L0 in thin films measured by reflectivity is consistently less than
what is measured in the bulk by SAXS. The smaller lamellar dimensions match those
measured by scanning electron microscopy in thin film fingerprint samples. These insights
into the self-assembly of the block copolymers in thin films are important when designing
nanofabrication platforms for high-quality defect-free DSA of the block copolymers. The
goal of this project is to connect line edge roughness of aligned block copolymer patterns
after DSA to material properties measured by reflectivity in polymer thin films such as
interface width in order to enable predictive design of next generation polymers that
minimize pattern roughness.

Figure 6.2: (A) Structure of theA-b-(B-r-C) copolymers used in the reflectivity study where fC
refers to the molar composition of the blue component in the random block. (B) Example reflectivity
data (red circles) and fit to the real-space model (black line) taken at 270 eV. (C) Lamellar spacing,
L0, as a function of fC measured in the bulk from SAXS (yellow) compared to that measured in thin
films from reflectivity at 270 eV (blue) and 284.5 eV (red). Error bars represent 95% confidence
intervals from the fits to the reflectivity data.

6.2.2 Impact of Structural Isomerism On the Self-Assembly of Diblock Copoly-
mers
Structural isomerism, of which the types and numbers of atoms are identical but different
in the spatial arrangements, has shown an impact on polymer properties as a collective
interaction. A deeper understanding of the structural isomer-property relationship in
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polymeric materials is essential and yet understudied subject mainly due to the polydisperse
and long-chain nature. In collaboration with scientists at NIST, the Nealey group reported
a design protocol for high precision structural isomeric block copolymers (SI-BCPs),
combining well-defined parent polymer, polystyrene-block-poly(glycidyl methacrylate)
(S-b-G), synthesis (living anionic polymerization) and post-polymerization modification
(thiol-epoxy "click" chemistry) with structural isomer small molecules (RF -SH). The
resulting S-b-G(RF ), possessing identical molecular weight and nearly equal dispersity,
are ideal for a comprehensive investigation of the sole impact of structural isomerism
on the BCP self-assembly. Domain periodicity (L0) and segmental chain length (a) are
measured using small angle x-ray scattering and multi-angle light scattering techniques.
The Flory-Huggins interaction parameter, c , calculated from an equation derived from
self-consistent mean field theory, of each SI-BCP shows a significant dependence on
the position of fluorine atoms. In collaboration with de Pablo group, both simulation
and experimental results suggest there is a strong correlation between the orientation of
dipole moment and c . This finding from joint collaboration paves a way to a systematic
investigation on the structure-property relationship of polymeric materials and further
enable a broader scope of new and delicate materials design at the molecular level.

6.2.3 Surface energy and density measurements
A-b-(B-r-C) copolymers are a promising route for designing defect free structures with
a specified pitch size because they allow for decoupling surface interactions and chain
interactions. Nealey group uses PS as A block and different modified-PGMA as B and
C blocks. For perpendicular lamellae structures, the surface tension of A should be
balanced by the surface tension of B-r-C by varying the relative ratio of B to C. One
simplified approach for predicting this ratio is to assume that the surface tension of B-r-C
is a linear function of composition. Using all atom simulations, we determined surface
tension of PS and 12 modified-PGMA homopolymers. Then, predicted compositions
from homopolymers’ surface tensions using a linear approximation for 7 systems that
have experimental results available. Out of 7, we find that 5 show a good agreement
(Figure 6.2A). We also tested this approximation by simulating a real B-r-C system (Figure
6.2B). For this case study, we chose TF and TGM as B and C blocks respectively. Note
that TF-TGM has shown a good agreement in Figure 6.2. Also, we find that density of
TF-r-TGM decreases linearly with the TGM composition. Both surface tension and density
are measured at 150�C, the thermal annealing temperature used in the experiment. An
understanding of how composition affects surface tension allows for informed design and
reduction of the synthetic burden of A-b-(B-r-C) copolymers.
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Figure 6.3: (A) Chemistry platform and synthetic scheme of polystyrene-block-poly(glycidyl
methacrylate) (S-b-G) and fluorinated benzenethiol (RF -SH) structural isomers modified
polystyrene-block-poly(glycidyl methacrylate) (S-b-G(RF)). RF -SH pool consists of mono-fluorine,
di-fluorine, tri-fluorine, tetra-fluorine, and penta-fluorine modified benzenethiols. The abbreviation
of each thiol is labelled. (B) The lamellar domain spacing and calculated c values indexed by
the RF -SH species. The BCPs were annealed at 150�C for 20 h under vacuum. The inset image
shows the correlation between the orientation of dipole vector (pointing towards or away from the
backbone) of the fluorinated phenyl ring and the c values of di-fluorinated thiophenol modified
SI-BCPs.

Figure 6.4: (A) Comparison between simulation and experiment for equal surface energy com-
position for a variety of B-r-C random copolymers. (B) Calculations of density (red) and surface
tension (red) as a function of TGM composition for a TGM-r-TF random copolymer.
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7.1 Design Goals

Current impact mitigating materials are optimized for compressive loading across a narrow
impact frequency range. The Materials for High-Performance Impact Mitigation group
aims to develop a new paradigm for meta-material designs for impact protection in sports,
industrial and other activities, where relative impact velocities range from 10 m/s to over
100 m/s with impact energies up to 500J or more, all of which could cause severe traumatic
brain injury. Specifically, the use case aims to design material systems to attenuate, deflect,
and dissipate impact energy over a wider impact frequency range under both linear, shear,
and biaxial loading then currently possible.

To achieve this vision for new protective material systems, three integrated thrusts will be
pursued:

(1) Novel Architectures: Novel non-linear materials and architectures (flexible disordered
networks, concentrated particle suspensions, and granular media) that exhibit strain in-
duced state changes to unlock new routes of energy absorption.

(2) Novel Metrologies: New dynamic metrologies to measure local stress- and strain-
dependent material properties (stiffness, yield or jamming) at (sub-)micrometer to millime-
ter length scales.

(3) Novel Models: New classes of non-linear constitutive models that connect coarse
grained and multi-physics finite element simulations to material response physics at the
microscale (heat, interface friction, buckling) and centimeter level (adaptive compliance,
yield strength, and fracture energy).
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Figure 7.1: Systems design chart for High-Performance Impact Protection

To minimize injury, including mild traumatic brain injury (mTBI), impact protection must
reduce linear and rotational accelerations to safe levels. The quantitative design goal of
this use case group is to design material systems that stay below 50 g and 3,000 rad/s2 (a
50% reduction in current recommended levels of 100 g and 6,000 rad/s2, respectively) for
velocities up to 100m/s and energies up to 500J.

The system design chart in Figure 7.1 shows the processing-structure-properties-performance
work flow for the Materials for High-Performance Impact Mitigation use-case group.

7.2 Research Accomplishments
7.2.1 Harnessing the polymer glass transition for stress-adaptive shear response

Concentrated, or dense, suspensions of small particles in a liquid exhibit striking non-
Newtonian behaviors such as shear thickening and shear jamming [1-3]. This shear-induced
transformation from an easily flowing state to a state of much enhanced viscosity is fully
reversible, and has been leveraged in a range of applications, including flexible stab-proof
armor, smart speed bumps, and damping systems for impact mitigation [4,5]. To date,
studies have elucidated the structure-property relationship in suspensions of rigid, non-
deformable particles, revealing the important roles of inter-particle contact forces. However,
an easy yet versatile approach for in situ control of suspension rheology is lacking. A
collaboration between the Rowan, de Pablo and Jaeger groups drew inspiration from
stimuli-responsive materials to control the shear jamming properties of fluids. This work
harnessed the well-known polymer glass transition phenomenon to achieve facile control
over the shear thickening/jamming rheology of dense suspensions.

We designed polymer particles with readily accessible glass transition temperatures (Tg) so
that the mechanical stiffness and inter-particle interactions in a suspension can be tuned
in situ with temperature. In order to vary Tg, three types of particles were synthesized,
with reaction scheme shown in Figure 7.2a. The storage modulus reduces from ⇠1GPa
to ⇠1MPa when heated over Tg (Fig 7.2e). By studying the rheological properties of
such thermo-responsive suspension at varying temperatures, we showed for the first
time that the shear thickening strength displays strong and non-monotonic temperature
dependency (Figure 7.3a), as opposed to conventional suspensions of rigid particles. The
shear thickening strength strongly tracks the trend in tand (Figure 7.3b), implying the
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Figure 7.2: a) Schematic diagram of the Thiol-Michael dispersion reaction and the particle network
structure. b-d) The scanning electron microscopy images of P-9, P-29 and P-50 particles, respec-
tively. The mean size and the standard deviation are indicated below each image. e) Mechanical
stiffness characterization via DMA. The storage modulus (E 0) and tand = E 00/E 0 of the carrier
liquid-swollen P-9, P-29 and P-50 polymer films were measured in an immersion setup, using an
oscillation frequency f=1Hz. The values of E 0 for several other particle materials are indicated for
comparison. PMMA: Poly (methyl methacrylate) and PS: polystyrene.

general applicability of our approach. Finally, pull test experiments show that our design
enables in situ turning on or off of shear jamming simply by varying the temperature
relative to Tg, which lays the groundwork for thermally switchable jamming systems
(Figure 7.3c). A paper on this work has been submitted and a preprint is available at
researchsquare.com [14].

7.2.2 Tuning dynamic bond exchange and morphology for impact applications
Benzalcyanoacetate molecules are able to undergo room temperature, catalyst-free dynamic
exchange with thiols [6-8]. A key feature of this dynamic bonding motif is the ability
to tune the binding constant (Keq) by simply varying the electronic moieties on the b -
phenyl ring (R groups shown in Figure 7.4a). The widely tunable nature of these dynamic
bonding systems is ideal for impact mitigation applications, as the kinetics of exchange
may be adjusted to match the timescales of interest during an impact event. Therefore,
understanding the impacts of electronic substitution on the dynamic exchange kinetics and
stress relaxation properties are essential for future impact mitigation applications.
To measure how the exchange kinetics respond to various electron-donating and -withdrawing
groups, the Rowan group carried out control studies using in situ NMR spectroscopy on
small molecule analogue systems spanning a range of donating and withdrawing groups
(-OMe, -Me, -H, -Cl, -CF3, NO2), see Figure 7.4b. In line with previous results, molecules
with stronger electron-withdrawing character were found to have higher overall Keq values.
However, by fitting to a second order forward, first order back dynamic equilibrium model,
it was found that the Keq values were dominated by a reduction in back reaction rate, Figure
7.4c. From a materials standpoint, a slower reaction rate implies a bond with a longer
lifetime, which should in turn give rise to longer stress relaxation times.
To assess the effect of the large changes in rate constants for the various Michael accep-
tors, a suite of dynamic networks were synthesized using a ditopic benzalcyanoacetate
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Figure 7.3: a) Stress-controlled steady-state rheometry data for the P-9 suspension with particulate
volume fraction f=53.0 at �5�C (green), 5�C (blue) and 35�C (pink), demonstrating that the
strength of shear thickening is highly temperature dependent. The black line has a slope of 1
corresponding to DST where the shear rate is constant. b) slope b in the discontinuous shear
thickening regime as a function of temperature for a f=53.0% P-9 suspension, a f=50.1% P-29
suspension, and a f=51.4% P-50 suspension. Shaded areas indicate the tand results from Figure
7.2, here shifted up by 15�C. Arrows in b indicate b for the conditions measured in panel a. c)
Images of the suspensions under extensional deformation taken at T=5�C, 35�C and 65�C for P-9
and P-50 suspensions (f=56.0%). The pulling rate was 8 mm/s. The scale bar indicates 5 mm.

Figure 7.4: a) Reaction scheme of dynamic thia-Michael reactions. b) Kinetic traces from in
situ NMR experiments of different Michael acceptors in DMSO-d6. c) Rate constants extracted
from dynamic equilibrium model fits to the kinetic data, showing that the back reaction (solid) is
significantly more sensitive to electronics than the forward reaction (hashed).
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Figure 7.5: a) General composition of dynamic networks studied in this Use Case. b) Differential
Scanning Calorimetry thermograms of as-synthesized dynamic networks comprised of crosslinkers
bearing different -R groups. As expected, groups with stronger electron withdrawing character have
increased Tg (denoted in black text) and all systems display phase separated morphologies evidenced
by an upper transition temperature (highlighted by yellow box). c) Example stress relaxation data
suite (collected for DN-CF3) showing excellent agreement with the stretched exponential fit (dashed
lines).

crosslinker (2R) and a 6-armed thiol species (DPHMP), see Fig 7.5a. Prior to mechan-
ical characterization, differential scanning calorimetry was carried out to determine the
glass transition temperature across the range of networks (Fig 7.5b). As expected, higher
electron-withdrawing character led to higher Tg values, however it was also found that all
synthesized systems displayed an upper transition temperature related to the development
of a phase separated morphology, as previously reported by the group [9,10].
With the thermal properties of these materials analyzed, network samples were sent to
our collaborators at NIST (Forster and colleagues) for stress relaxation (Figure 7.5c) and
rheo-Raman studies. The experimental data collected for each system is well-described by
a stretched exponential decay (which assumes a distribution of relaxation modes), giving
access to energetic information when analyzed over a range of temperatures. Interestingly,
in all samples with sufficiently strong phase separated domains (as measured by rheo-
Raman), the stress relaxation behavior was found to be Arrhenius (up to the temperature at
which hard phase becomes unstable) and scaled directly with the energetics of the back
reaction. This implies the hard phase units act directly to stabilize network crosslinks,
giving another handle to tune stress dissipation in dynamic networks.

7.2.3 A new class of dynamic covalent suspensions with switchable response
The non-Newtonian behaviors of concentrated, or dense, suspensions arise from a network
of particle-particle contacts that smartly and dynamically adapts to imposed shear. Sus-
pensions of this type have wide-spread technological and industrial applications. Over the
last few years the Jaeger group developed new approaches, based on chemically function-
alizing particle surfaces, that make it possible to design dense suspensions with specific,
stress-dependent responses [11,12]. Now a collaboration between the Jaeger and Rowan
groups together with ARL extended these approaches to incorporate, for the first time,
dynamic covalent chemistry between particles and a polymeric solvent (Figure 7.6).
Specifically, a room temperature dynamic thia-Michael bond was employed to rationally
tune the equilibrium constant (Keq) of the polymeric solvent to the particle interface. We
demonstrated that low Keq leads to shear thinning while high Keq produces antithixotropy,
a rare phenomenon where the viscosity increases with shearing time. Based on extensive
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Figure 7.6: Illustration depicting a dynamic co-
valent dense suspension (DCS). These high-
particulate-fraction (55% by volume) DCSs con-
tain particles that can form room temperature
dynamic covalent bonds with the surrounding
fluid polymer matrix, resulting in a bonded poly-
mer graft layer which exchanges dynamically
(inset).

data from several different chemistries involving dynamic covalent bonds, we propose that
an increase in Keq results in an increase in polymer graft density at the particle surface
and that antithixotropy primarily arises from shear induced debonding of the polymeric
graft/solvent from particle surface and concomitant formation of shear-induced polymer
bridges. Thus, the implementation of dynamic covalent chemistry enables antithixotropy
in dense suspensions and provides a new molecular handle with which to tune their
macroscopic rheology.
These studies open the door to energy absorbing materials which sense mechanical inputs
and adjust their dissipation as a function of time or shear rate, and can switch between
these two modalities on demand. A paper on this work has been submitted.

7.2.4 Direct detection of frictional contact network formation in dense piezo-
electric suspensions
Control of the frictional contacts between particles in dense suspensions has provided
ways to tune the resulting, dynamic response to applied stress. Advances in experimental
approaches and simulations have shown that the formation of networks of frictional contacts
plays a critical role in the development of a shear thickening regime [1-3]. However, a lack
of techniques that allow for the macroscopic observation of frictional networks in optically
opaque suspensions makes the direct visualization difficult. A collaboration between the
Jaeger and Rowan groups employed piezoelectric BTO particles to measure the electric
charge generated in response to applied shear stress. Simultaneous measurements of
conductance and viscosity was shown to provide direct evidence for the formation of
frictional networks in the shear thickening regime (Figure 7.7).

Figure 7.7: Sketch of mechanism for stress-induced piezoelectric conduction mechanism along
frictional contact force network in dense suspensions in the shear-thickening regime.

7.2.5 Rigid cluster analysis of dense frictional suspensions
Dense suspensions solidification under stress is a material property ripe for use in impact
mitigation technologies. One major obstacle in exploiting this solidification is a lack of a
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mesoscopic description of rigidity that would predict when such system begins to transition
from fluid to solid. A collaboration between the de Pablo and Jaeger groups overcame
this obstacle by borrowing a rigidity metric from the dry granular community and applying
it to simulations of dense suspension flow. This method makes it possible to decompose
frictional force networks into mechanically rigid and non-rigid regions. An example of
this construction is shown in Figure 7.8. In the left panel the network of frictional particle-
particle contacts is shown in red. The right panel shows the subset of the red network that
corresponds to rigid clusters. It is clear from this figure that even though the suspension
has a fully percolating network of frictional forces (red), this is not enough to produce a
system-spanning cluster that is mechanically rigid. Such system-spanning rigid clusters
are only found when the particle volume packing exceeds a minimum threshold and the
applied shear stress is sufficiently large.

The simulation results provide a fundamental advance in how to understand the evolution
of rigidity in dense suspensions as a function of particle packing fraction and applied shear
stress. They also give insight into how to engineer the solidification transition in dense
suspensions in order to obtain materials with enhanced impact mitigation properties.

Figure 7.8: Snapshots from simulations of dense suspension. Left panel: Line segments show forces
between neighboring particles, with force magnitudes given by the line thickness. Hydrodynamic
forces are shown in blue, frictional contact forces in red, and normal contact forces in grey. Right
panel: Green line segments show the subset of frictional forces (red in the left panel) that constitute
rigid clusters.

7.2.6 Stress activated constraints in dense suspensions
A second collaborative project between the Jaeger and de Pablo groups investigated, via
simulations, how the dramatic increase of a suspension’s viscosity during shear thicken-
ing and shear jamming can be understood within a framework that abstracts details of
the forces acting at particle-particle contacts into general stress-activated constraints on
relative particle movement. We found that focusing on just two constraints, affecting
sliding, and rolling at contact, can reproduce the experimentally observed shear thickening
behavior quantitatively, despite widely different particle properties, surface chemistries,
and suspending fluids. Within this framework parameters such as coefficients of sliding
and rolling friction can each be viewed as proxy for one or more forces of different physical
or chemical origin, while the parameter magnitudes indicate the relative importance of the
associated constraint. In this way, a new link has been established that connects features
observable in macroscale rheological measurements to classes of constraints arising from
micro- or nano-scale properties. A paper on this work has been submitted [3].
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7.2.7 Impact mitigation with network-based meta-materials
In close collaboration with NIST our patented approach for the design of network-based
meta-materials for impact absorption was further developed. At NIST this was led by
Soles, Chan and Reyes-Martinez, while the CHiMaD contributions came from the Nagel,
de Pablo and Jaeger groups. Disordered-Network Mechanical Materials (DNMM), com-
prised of random arrangements of bonds and nodes, have emerged as mechanical metama-
terials with the potential for achieving fine control over the elastic properties of open-cell
materials. Recent computational studies by the CHiMaD team demonstrated this control
whereby an extremely high degree of mechanical tunability can be achieved in disordered
networks via a selective bond removal process called pruning. During this reporting period,
we experimentally demonstrated how pruning of a disordered network alters its macro-
scopic dynamic mechanical response and its capacity to mitigate impact. Impact studies
with velocities ranging from 0.1 m/s to 1.5 m/s were performed, using a linear actuator and
a drop tower at NIST, on 3D printed pruned and unpruned networks comprised of materials
spanning a range of stiffness that were 3D printed at UChicago. High-speed videography
was used to quantify the changes in Poisson’s ratio for each of the network samples. Our
results demonstrate that pruning is an efficient way to reduce the transmitted force and
impulse from impact in the medium strain rate regime (101s�1 to 102s�1). This approach
provides a useful alternative route for designing materials with tailored impact mitigating
properties compared to randomly removing material from open cell foams. A paper on
this work was published in Soft Matter [13].

Figure 7.9: Impact behavior of disordered network mechanical metamaterials (DNMM). a) An
impact mitigation system represented as a one-dimensional spring-mass system. The schematic
shows the time dependent force F(t), exerted by the impactor of mass mi on the protective material
(DNMM) and target with masses mp and mt , respectively. The masses are coupled by springs
representing the stiffnesses kp and kt of the protective material and target, respectively. b) Images
of representative unpruned and pruned 3D-printed DNMM samples. c) The impact experiment
is composed of an instrumented impactor, the DNMM sample and an instrumented load plate to
measure the transmitted load due to impact.
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8.1 Design Goals

Building on CHiMaD Phase I research by CHiMaD Precipitation-strengthened Alloys
use-case group and Additive Manufacturing Seed Group, the CHiMaD’s Alloy Design
for Additive Manufacturing use case group is focused on materials design to enable
the new technology of additive manufacturing (AM). Based on feasibility assessments
previously conducted under CHiMaD-sponsored and lead projects in Northwestern and
MIT’s Materials Design classes, the scope of our design applications includes steels, Co
superalloys and Ti-based alloys, the latter including transformation-toughened alloys as
well as precipitation-strengthened shape memory alloys.

Studies, in collaboration with NIST, center on on current Ni superalloys and stainless
steels such as 17-4PH which are notoriously incompatible with additive manufacturing as
revealed in ongoing studies at both NIST and QuesTek. New steel designs address strength
levels of 1.2GPa YS and greater, with special attention to processability constraints to
avoid hot tearing during deposition. Composition design for control of oxide distributions
is also important due to the elevated oxygen levels inherent in powder processing.

Building on our developing design tools and databases for precipitation hardened alloys,
the printable Co alloy design seeks to exploit slow precipitation kinetics to allow quench
suppressible precipitation hardening during deposition while achieving final properties,
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Figure 8.1: Printable Co Superalloy System Chart.

strength level of 1GPa YS@ 800C, exceeding those of Ni718, the best performing printable
Ni-based superalloy. The system design chart showing the PSPP relations for a printable
Co superalloy is shown in Figure 8.1.

Continuing research at QuesTek on enhancement of the AIM Accelerated Qualification
method is now focused on the certification of additively manufactured components, with
emphasis on UQ of probabilistic property forecasts in collaboration with the UQPET tool
group.

In support of achieving these alloy design goals, the CHiMaD Alloy Design for Additive
Manufacturing use case group is also focusing on: (1) developing data-driven property
predictions for additively manufactured alloys; (2) establishing data-driven models in
multi-scale manufacturing simulation schemes, in collaboration with CHiMaD Artificial
Intelligence and High-Performance Data Mining tool group; and (3) fundamental studies
to further our currently lacking understanding of dendritic solidification during the additive
manufacturing processes.
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8.2 Research Accomplishments

8.2.1 Printable Cobalt Superalloy, Olson Group
It was previously determined that Re has the lowest diffusivity in Co, so design work this
year at MIT has explored small additions of Ru to minimize the g 0/g partition coefficient
for improved high temperature creep resistance. QuesTek defined additional design re-
quirements for the printable Co-superalloy which include achieving a solvus temperature
greater than 900°C, gamma prime content greater than 40%, lattice misfit of -0.1%, a
microstructure free of undesirable competing phases, and cracking susceptibility / hot
cracking susceptibility within a printable range.

Defending his Northwestern doctoral thesis on printable SMA design in November 2020,
Chuan Liu in 2021 took the position of CHiMaD NIST Fellow previously held by Dr.
Peisheng Wang. He was based at MIT in 2021 working with Prof Olson, collaborating with
Ursula Kattner and Carrie Campbell on thermodynamic and mobility database development,
in support of the Co databases. He assisted Olson in supervision of new MIT doctoral
student Krista Biggs focused on printable Co superalloy design. In collaboration with the
UQPET tool group the design projects explored methodologies of Design with Uncertainty
integrating quantified model accuracy.

Figure 8.2: Comparative database predictions for alloying effects on Re partitioning in reference
2-phase alloy composition established by evaluation of 1st-iteration design prototype.

Dr. Liu used the results of the measurement of the 4-phase equilibrium found by the Co Use
Case group in the prototype alloy of the preliminary design conducted in the 2019 Materials
Design class to define a 2-phase composition as a reference composition for exploring
alloying effects on Re partitioning as summarized in Figure 8.2, where the strongest effect
identified is increasing Ni content. Building on this assessment, he coached a team in
the 2021 Computational Materials Design class at MIT designing an alloy intended as
a benchmark for design specifically for 3D printing. Figure 8.3 shows good agreement
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between databases for the suitability of the composition as a solution-treatable 2-phase
alloy to be experimentally validated in 2022.

Figure 8.3: Equilibrium phase fraction step diagrams comparing database predictions for 2021
design prototype alloy.

8.2.2 Design of Printable TRIP Steel, Olson Group
A design class project at MIT in 2020 built on previous ONR sponsored work on transforma-
tion toughening mechanisms to design a printable precipitation-strengthened transformation-
toughened austenitic TRIP steel. The concept explored by the all-undergraduate team was
to apply transformation toughening to tolerate residual porosity from additive deposition,
to eliminate the need for HIP consolidation. The contour plots of Figure 8.4 summarize the
final optimization of Cr and Ni content in the alloy, balancing yield strength in MPa (red),
an "HCS" hot cracking susceptibility parameter (black), and as-deposited delta ferrite
fraction (blue), while meeting a required "ASP" austenite stability parameter (yellow) for
optimal transformation toughening. Under CHiMaD support, MIT doctoral student Bran-
don Snow has assessed the team’s calculations in preparation for experimental validation
of the design in 2022.

8.2.3 Optimization of Printable 17-4PH Stainless Steel, Olson Group & QuesTek
In continued coordination with Stoudt (NIST) on optimization of current alloys, QuesTek
has developed alternative compositions for the 17-4PH martensitic stainless steel to facili-
tate complete martensitic transformation while enhancing corrosion resistance. Designs
have demonstrated alloys usable with print-and-age treatment, as well as an alloy achieving
good properties in the as-built condition exploiting carbide autotempering during deposi-
tion. Further development and qualification of these steels is being conducted under Navy
support. Also in coordination with efforts at NIST, QuesTek is exploring under NASA
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Figure 8.4: Cross-plot for optimiza-
tion of Cr and Ni levels in printable
transformation-toughened austenitic
steel.

support the predictive process optimization of printed Ni superalloys including 718 and
625, with the ultimate goal of design of new printable Ni alloys with higher performance.

8.2.4 Printable Titanium Alloys, Olson Group
After completing his ONR-supported doctoral research at Northwestern on design of
transformation-toughened Titanium-based alloys, Dr. Fan Meng joined QuesTek and
initiated work on design of Ti alloys specifically for additive manufacturing. Research was
coordinated with the Ti alloy design activities at NIST by Dr. Liang, who had attended
Olson’s design class at NU as a Visiting Scientist under CHiMaD auspices. In 2021 Dr.
Liang joined QuesTek and continued the work started by Dr. Meng, focusing on achieving
an equiaxed deposition grain structure in wire-based printing.

8.2.5 SRG Design Consortium Projects and Design Class Interactions, Olson Group
CHiMaD/SRG Design Consortium projects are the primary source of student projects in
Olson’s Materials Design class with supported researchers serving as coaches to the team
projects. The revised class in Computational Materials Design at MIT, conducted in 2021
in virtual mode, continued to draw from CHiMaD research for these team projects. In
addition to the Printable Co Superalloy project coached by Dr. Liu, further application
of the ONR-supported transformation toughening research addressed martensitic naval
hull steels toughened by dispersed austenite. Building on our strong relation with Apple
as enhanced by Dr. Jim Yurko joining the CHiMaD TAB, Apple served as client to a
project on controlled-melting-point lead-free solder alloys. A project on printable steels in
collaboration with Universitat Paderborn in Germany addressed high-strength tool steels.
A project on high-strength aluminum alloys drew on the new DSO-Singapore program.
Staffing of the coaching and team participation was enhanced by virtual Visiting Scholars
from Germany, Greece, and Singapore.

8.2.6 X-ray Diffraction Analysis of QuesTek Co Alloy Prototypes, QuesTek
Microscopy results, shown in Figure 8.6 (left), of an etched prototype #1 aged at 900�C
for 24 hours revealed a significantly larger fraction of the gamma prime phase than the
40 mole% predicted to be present at equilibrium. To obtain a quantitative measure for
comparison to the predictions, x-ray diffraction was performed on the heat-treated button
material.
Due to the large grain structure of the arc-melted and heat-treated button, the material
needed to be mechanically milled to remove the interference of orientation-based diffrac-
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Figure 8.5: Design class projects conducted at MIT.

Figure 8.6: (left) Scanning electron microscope image of prototype #1 cobalt alloy. Etched using
waterless Kalling’s reagent; (right) Quantification of XRD spectra intensity ratios and identified
crystal structures into volume fractions of phases.

tion. The risk of strain-induced transformation in the alloy was concluded to be low enough
risk that it would not affect the measurement of the g and g 0 phase fractions.

After an 18hr scan was completed, the detected peak intensities were quantified and seper-
ated into bins based on their identified crystal structure, as presented in Figure 8.6 (right).
The TiCo3 g 0 phase was measured to be 78.4% volume fraction of the milled material,
agreeing well with the microscopy results observed within the etched microstructure.
Titanium nitride particles were characterized in the as-cast microstructure and persisted
throghout heat treatment. These were concluded to be introduced by the minor impurity
of the raw materials. The chromium-cobalt compound was not anticipated and will be
considered in further characterization efforts.

8.2.7 Printable Cobalt Alloy Thermodynamic Database Development, QuesTek
Based on the latest XRD analysis results, the QuesTek Co thermodynamic database
was preliminarily updated to address the discrepancies in g 0 volume fraction at 900�C.
Multiple binary L12 (g 0 phase definition in the database) end members were updated to
have consistent enthalpies of formation with DFT calculation as well as ternary interaction
parameters. The most significant contribution came from the Co3Cr end member, which
is more stable compared with its pre-calibration value according to DFT enthalpy of
formation, and its entropy contribution is calibrated according to Co-Cr binary phase
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diagram to ensure it remains correctly unstable in the binary system. The updated database
provides better consistency with XRD characterization as shown by the comparison in
Figure 8.7. Further calibration of the database based on composition characterization
will further enhance the accuracy of the database, especially critical in predicting g/g 0
segregation and misfit.

Figure 8.7: Comparison of calculation results for prototype #1 between (left) previous database and
(right) latest calibrated database.

8.2.8 Latest Printable Cobalt Alloy Design Cross-plots with Updated Thermody-
namic Database, QuesTek
With the updated database, QuesTek calculated the cross plots for the initial designs,
prototypes #1 and #2, illustrating the effect of Cr and W variations on µ phase appearance,
misfit and coarsening rate at 900�C as shown in Figure 8.8. Indicated by the colored
arrows, the calculated properties of prototype compositions meet the pre-set requirements.
Upon further calibration of the database, this design activity will be conducted again.

Figure 8.8: Cross plots for the initial designs, (left) prototype #1 and (right) prototype #2, with
varying Cr and W contents, showing µ phase fraction, misfit and coarsening rate at 900�C. The
starred compositions are the prototype compositions, and the colored arrowing locations are the
desired contour thresholds.

8.2.9 Solidification During Additive Manufacturing, Voorhees Group
In metal additive manufacturing (AM), the solidification microstructures that form during
processing dictate the printability of the material and the final properties of the component.



70 Chapter 8. Alloy Design for Additive Manufacturing

Figure 8.9: a morphology selection map for a
model ternary system, showing the effects of vari-
ous diffusion matrices on the location of the CET.

For example, the columnar-to-equiaxed transition (CET) describes the shift from elongated
columnar grains that grow in the direction of the melt pool to equiaxed grains. The former
is highly vulnerable to hot-cracking and results in anisotropic properties, while the latter is
much more resistant to solidification strains and imparts isotropic properties. A model of
the CET allows for the construction of morphology selection maps that link the expected
microstructure to solidification conditions and processing parameters, which can be used
to develop processing strategies that create the desired microstructure.

We have combined existing models for the CET and multicomponent dendrite growth to
calculate morphology selection maps for the concentrated, multicomponent alloys relevant
to modern metallurgy and additive manufacturing. Figure 8.9 shows such a processing
map for a model ternary system for various diffusion matrices. It is clear that both adding
slow-diffusing species and accounting for diffusional interactions can significantly shift the
location of the CET; thus, diffusional interactions should not be ignored when modeling
concentrated alloys. Additionally, working with researchers at Mines ParisTech, we have
coupled the multicomponent dendrite growth model with ThermoCalc, which allows for
the treatment of non-linear phase diagrams, improving the accuracy of these calculations
for concentrated alloys.

Additionally, the solidification conditions present in additive manufacturing cause the
interface to depart from local equilibrium, which introduces kinetic undercooling effects.
While the previous analysis does not incorporate the effects of kinetic undercooling, we
used a dissipation relation to derive the two interfacial response functions (IRFs) describing
non-equilibrium phase transformations in concentrated multicomponent alloys. The first
response function describes the velocity of the interface, and the second describes the
concentrations in each phase at the interface. Additionally, we have used the dissipation
relation to self-consistently incorporate an effect known as partial solute drag in both IRFs
to provide a more physical model of the interfacial behavior. Taken together, the IRFs
completely describe the kinetic effects during rapid solidification, which will improve the
accuracy of these processing maps under the solidification conditions present in AM.

8.2.10 AM-CFD development for porosity prediction, Liu Group
A finite volume method (FVM) based Navier-Stokes solver is developed to solve an
additive manufacturing (AM) process that considers moving heat source. The solver
framework considers multiple physical phenomena of AM process at the part , melt pool
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and microstructure scales to link process parameters to material structure and properties.
The code base also considers statistical variability in the process to account for changes in
melt pool width and depth in the AM process. The stochasticity of the process is possible
to calibrate with limited available experimental data and then extend the analysis for part
scale AM simulation. The Liu group’s developed award winning FVM based C++ code has
the capability to predict the lack-of-fusion porosity considering a multi-track multi-layer
AM process. Combined with the stochastic process, the code has the capability to predict
with higher accuracy the surface roughness and porosity in an AM manufactured part with
higher accuracy which is a key requirement to study the fatigue life of an AM processed
part. In addition to lack-of-fusion porosity, AM processing leaves porosities arising from
vapor depression that is recognized as keyhole porosity. The keyhole formation is a highly
transient phenomenons, and the morphology of the keyhole varies significantly to affect
the material distribution as the AM process advances. The overview of the capabilities and
research focus on AM-CFD is shown in Figure 8.10.

Figure 8.10: Stochastic simulation framework for predicting the surface roughness and porosity.

8.2.11 Dimensionless Learning, Liu Group
It is challenging to identify the explicit causal relationship between various parameters
in a complex system. These highly correlated parameters lead to the complexity of
experimental design and process control. Dimensionless numbers and scaling laws provide
a simple but powerful way to analyze the causal relationships among parameters, but
classical dimensional analysis cannot give unique dimensionless numbers and highly relies
on researchers’ personal experience.

To this end, we proposed a data-driven dimensional analysis, dimensionless learning, to
automatically identify the dominant dimensionless numbers and the best scaling laws from
experimental data. By incorporating physical knowledge about physical dimensions
into machine learning algorithms, we successfully reduce the parameters into a few
dimensionless numbers, which reduces the notorious overfitting problem given a small
amount of data. The identified dimensionless numbers not only have a good physical
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explainability but can be used to discover scaling laws that give fundamental insights into
complex systems. The proposed framework is validated in three complex engineering
problems: turbulent Rayleigh-Benard convection, keyhole dynamics in laser melting of
metals, and porosity formation in 3D printing.

Dimensionless learning applied to surface-roughness-fatigue life estimation
One major challenge in estimating the fatigue life of additively manufactured alloys with
microstructure-based models is that those models cannot directly incorporate the effect
of the surface roughness. The microstructure-based models are representative volume
element-based which only considers one material point at part scale and expands it to
a representative microstructure. However, surface roughness only exists at the surface
and does not directly affect the material points at the center of the coupon in terms of
fatigue. To alleviate this inconvenience, we proposed a dimensionless learning paradigm
for fatigue life estimation from surface roughness and material parameters as a function
of micromechanical quantities such as micro-stress or plastic strain. The idea here is to
come up with the micromechanical quantity (such as plastic strain or microstress) from
detailed simulation and use the dimensionless number-driven model as a surrogate to
compute the fatigue life (similar to the concept of fatigue-indicating parameter). The initial
study to discover a material independent model considered surface energy, shear modulus,
Poisson’s ratio, surface roughness, plastic strain, and cycles to failure as parameters. The
analysis came up with three non-dimensional numbers with data from literature and a
prediction was made for 316 Stainless Steel. The result is shown in the Figure 8.11. The
model can give satisfactory results to match with the experimental result.

Figure 8.11: The dimensionless parameters discovery from data. A test example for 316 stainless
steel.

8.2.12 Simulation-guided Process Design, Cao Group
Melt pool control is essential in metal additive manufacturing processes since the melt
pool geometry directly affects geometric accuracy and material properties of the fabricated
part. In this work we developed a general framework for a simulation-guided process
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design method to control the melt pool depth with focus on the directed energy deposition
(DED) process. The developed method enables the possibility of finding a laser power
profile that achieves a desired melt pool depth using just one simulation. Figure 8.12
illustrates the basic idea of the simulation-guided process design framework. The idea
of simulation-guided process design is to implement a controller in the thermal FEM
simulation to control the melt pool depth and to use the calculated variable laser power
profile from the simulation to command the laser in the DED process. Since no iterative
simulations and experiments are required, the developed framework can achieve the laser
power profile design to control the melt pool depth in just one simulation, enabling a fast
process design for DED. The approach is also applicable in other laser AM processes, e.g.,
powder bed fusion (PBF).

Figure 8.12: Schematic of the simulation-guided variable laser power design method.

In the current work, the developed simulation-guided process design framework is applied
to two example cases using as-deposited 718 Ni. The first case is a bidirectional-scanned
thin wall with uniform melt pool control, of which the simulation results are shown in
Figure 8.13. Figures 8.13A and B are the comparisons of the melt pool depth vs. time
with and without control in the simulation. From the results one can see that when using a
constant laser power without control, the melt pool depth continuously increases as more
and more layers are deposited. Additionally, there is a sharp peak at the start of each
layer because of the heat accumulation when the laser turns around. Figure 8.13C is the
comparison of the probability densities of the melt pool depth with and without control.
88.2% of the measured melt pool depth are in the range of 1.4 mm ± 0.1 mm, which
indicates that the melt pool depth is controlled to be mostly uniform at 1.4 mm with the
tuned PI controller. The simulation took 64 mins running on a Nvidia RTX 8000 GPU. In
the next step, the laser power profile is filtered with a moving average filter to guarantee
the smooth change of the laser power, as shown in Figure 8.13D. and then implemented
in the DED experiment by modifying the machine code. The temperature fields in the
experiment captured by an IR camera with a constant laser power and the designed laser
power are shown in Figure 8.14. The experimental results clearly show that using the
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resulting laser power profile from the simulation leads to a much uniform melt pool depth
during the process.

Figure 8.13: Simulation results of the bidirectional-scanned thin wall.

Figure 8.14: Visualization of the temperature field in the experiment (a) using a constant laser
power (b) using the resulting laser power profile simulation.

In the second case, site-specific control is implemented for a rounded-square geometry in
which one half of the part is controlled with a melt pool depth of 1.4 mm and the other half
is controlled with a melt pool depth of 2.0 mm. The intention of this case is to make the
two halves of the part undergo different thermal histories and, therefore, lead to different
mechanical properties. The simulation took 103 mins running on a Nvidia RTX 8000
GPU. The final built rounded-square part using the designed laser power profile is shown
in Figure 8.15A. To compare the mechanical properties of the material built with different
melt pool depths, tensile tests were performed on specimen cut from each half of the part.
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The size of the tensile specimen is given in 8.15B. Both sides of each of the walls were
faced using wire electrical discharge machining (EDM), and then the tensile specimens are
cut vertically from the walls also using wire EDM. Three tensile tests for each group of
the part were performed on a Psylotech tensile testing platform, where results are shown in
Figure 8.15 (right). The results show that with the same melt pool depth, each group of the
tensile specimens has very similar tensile properties, while the tensile properties between
the two groups vary significantly. The material built with a melt pool depth of 2.0 mm
has an average 0.2% offset yield stress (YS) of 416.5 MPa and an average ultimate tensile
strength (UTS) of 728.2 MPa, while the material built with a melt pool depth of 1.4 mm
has an average YS of 384.0 MPa and an average UTS of 708.2 MPa. It is shown in our
previous work on 718 Ni that the UTS and YS increase with a decrease in solidification
time because of the larger and farther spaced Laves phase dendrites, and an increase in
cooling time (927K-1,130K) due to more d�phases breaking up the Laves phase dendrites.
In this case, when the melt pool depth is larger, both the solidification time and the cooling
time increase and the effect of the cooling time dominates, which leads to a larger UTS
and YS.

Figure 8.15: (left) (a) The built rounded-square part, (b) Size of the tensile specimen, (right) Results
of the tensile test: strain-stress curve, average UTS and YS.

Despite recent advancements in data-driven modeling of AM processes, the generalizability
of such models across a wide range of geometries has remained a challenge. Here, we
propose a graph-based representation using neural networks to capture spatiotemporal
dependencies of thermal responses in AM processes. Two neural network architectures
for spatiotemporal prediction of AM thermal responses are developed in the current work,
as shown in Figure 8.16. The GNN architecture predicts the single-time step update
in each training instance given the node and element features at the time-step and the
RGNN architecture predicts and trains multi-time step interactions where at each time
step the network receives a temporal nodal-based encoded representation, a non-temporal
element-based representation, and the hidden state of the previous stacked GRU cell and
outputs the thermal distribution over the geometry. Both architectures can be recursively
evaluated to produce thermal outputs of arbitrary length.

A database is developed based on high-fidelity finite element simulations, which has
allowed us to have access to the thermal histories of all geometric points. Heat conduction,
convection, radiation, and external heat flux as the result of the laser beam, are modeled
in our simulations, where stainless steel 316L is used as the material. To ensure that
we train and test the proposed models on diverse geometries, we selected 55 different
industrial-grade geometries from the ABC database, where 45 of them are used for training
and 10 geometries are randomly separated for testing.
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Figure 8.16: Schematics of the two
architectures for spatiotemporal pre-
diction of AM thermal responses: (A)
The GNN architecture (B) The RGNN
architecture.

Figure 8.17 depicts the training and testing results of the two proposed models. A baseline
solution, which is the same as the developed GNN architecture, only without the previous
temperature as the input is added for comparison. The output of the developed data-driven
models for a sample case in the test set is shown in Figure 8.17B. The baseline results in a
4.49e�4 MSE, the GNN model in 3.57e�5 MSE, and the RGNN model in 5.32e�5 MSE
averaged over all nodes of the simulation. Qualitatively, the results show a good agreement
between both GNN and RGNN models and the ground truth.

Figure 8.17: Training and evaluation results for the baseline, GNN and RGNN formulations: (A)
The evolution of the train and test losses; (B) An example simulation and the predicted thermal
history at three points with the location of points depicted on the top right and the comparison of
histories between baseline, GNN, RGNN and the ground truth on the lower right.

To further investigate the stability and capability of the model for long simulations, we
evaluated the models on 55 samples (45 for training and 10 for test sets) over 1,000
time steps, which is 1,000X and 20X the training span of the GNN and RGNN models,
respectively. A similar conclusion can be drawn by observing the RMSE evolution over
all training and test samples as shown in Figure 8.18 where the GNN model results in a
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RMSE of 1.5e�2 for the training set and 1.44e�4 for the test set, while the RGNN model
shows a small error propagation with a RMSE of 9.58e�3 on the training set and 9.32e�3

on the test set.

Figure 8.18: : Evaluation of the trained models’ capability to produce long-term simulations. The
evolution of the thermal field on a sample simulation is depicted for the GNN and RGNN models
(A and B). The error propagation of the sample simulation and all database simulations for both
models are shown (C and D).
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9.1 Design Goals
The design goal is a high-volume fraction g-g 0 Co alloy that can be printed using additive
manufacturing approaches and will yield improved microstructural stability at higher tem-
perature along with an improved creep and oxidation resistance and printability compared
to IN718.

To achieve this goal, it is necessary to avoid cracking upon processing. Thus, we are
focusing on an alloy that has a small freezing range (< 100 degrees), and are exploring
the use of grain refiners to yield an equiaxed structure and reduce the number of high
angle grain boundaries. To allow for precipitation of g 0 from a single-phase alloy, the
temperature difference between the g 0 solidus and solvus should be 40C. For the creep and
tensile strengths as volume fraction of g 0 should be in the range of 50-70%. To maximize
the creep resistance, the coarsening resistance should be increased and the misfit between
g and g 0 should be small. The formation of deleterious TCP phases should also be avoided.
To strengthen the grain boundaries B and C additions are being considered. Oxidation
resistance is achieved through the addition of Cr. An additional goal is a density less than
8.74 g/cm3.

The system design chart in Figure 9.1 shows the processing-structure-properties-performance
links considered by the Cobalt-based Superalloys for High-Temperature Use.

9.2 Research accomplishments
9.2.1 Co Database Development

The development of CALPHAD-based databases with thermodynamic, diffusion mobility
and molar volume descriptions to support the design of the new Co superalloys continues
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Figure 9.1: Systems design chart for additive manufactured high-strength Co-based g � g 0 superal-
loys

at NIST under the guidance of Campbell and Kattner. When comparing the current
CHiMaD Co-based thermodynamic database predictions with the observed microstructures
for the CHiMaD 2019 design prototype it became apparent that additional work was
needed to improve the descriptions of the TCP phases. Thus the current work has focused
on how to systematically improve the descriptions for the most relevant TCP phases
in the database. To improve the modeling of the TCP phases, Griesemer (Wolverton
Group) and Wolverton performed density functional theory (DFT) calculations for the
binary endmember compounds of the TCP phases (µ,s ,c Laves (C14, C15, C36)) for
10 elements. Test calculations by Liu for the ternary Co-Cr-Ta system showed that the
addition of energy values for the binary endmembers was insufficient to realistically predict
the ternary homogeneity ranges of the TCP phases. This appears to be a typical behavior of
the compound energy formalism (CEF) when only binary endmembers are considered. The
effective bond energy formalism (EBEF) holds great promise to overcome this problem.
For this formalism the formation energies from the DFT calculations need to be translated
into effective pair bond energies using either an optimization or a matrix inversion approach.
These two approaches are currently being evaluated together with the evaluation of whether
the simplifications used within the CEF are also feasible for the EBEF. Figure 9.2 shows
the value in the EBEF approach in the prediction of the s in the Ni-Mo-Re system.

To further improve the current diffusion mobility descriptions for the Co-Al-W-Ni-Cr-Ta-
Ti-Re system in the FCC phase, new diffusion multiple stacks were designed, and all the
individual end-member components have been produced. The focus of the new diffusion
multiple stacks is to improve the mobility descriptions for the Co-based Ti and Re systems.
Each new diffusion multiple has 16 interfaces and schematic of the diffusion stacks is
shown in Figure 9.3. All the individual end-member components are single-phase FCC
compositions at the annealing temperatures of interest (1000�C and 1200�C).

9.2.2 Computationally Designed Alloys
After the experimental assessment of the first iteration design alloy (MSE390 alloy) and
updates to the thermodynamic databases, a new high-temperature, creep-resistant, and
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Figure 9.2: Homogeneity range of the s phase in Mo-Ni-Re. (a) Experimental observation of phase
equilibria at 1425 K compared to the calculated homogeneity range at 1500 K using the DFT data
for the binary endmembers with the CEF (b) and EBEF (c), respectively. The homogeneity range
of the sigma phase in CEF prediction (b) is unrealistically small. The EBEF prediction (c) is much
closer to the experimental observations.

Figure 9.3: Schematic of FCC diffusion multiple stacks that are in the process of being assembled
and will be annealed at 1000�C for 500 h and at 1200�C for 100 h. The ternary composition include
are Ni-0.10Cr-0.04Ta mole fraction and Ni-0.035Ti-0.035Re mole fraction.

printable Co-based superalloy composition (labelled as 1Re1Ru in Table 9.4) is optimized
using thermodynamic modelling and databases. To examine the effects of the slow diffusers
(Re and Ru), two additional alloy compositions are also assessed (labelled as Base and
1Re in Table 9.4).

All alloys are cast by arc-melting and homogenized at 1250�C for 20 h. The samples
are aged at two different temperatures (1000�C and 1100�C) and at three different times
(48 h, 192 h, and 1000 h). Figure 9.4a demonstrates that the three alloys exhibit a pure
g(f.c.c.)/g 0(L12-structure) two-phase microstructure, after aging at 1000�C for 1000 h. The
composition and partitioning behavior are examined employing atom-probe tomography
(APT) for long-time aged samples at 1000�C in Figure 9.5. Figure 9.4b demonstrates
that Re strongly partitions towards the g(f.c.c.)-phase, and W partitions less towards the
g 0(L12-structure)-phase with the addition of 1 at. % Re.

Samples that are aged at 1100�C include a Ta-rich precipitate-phase in addition to the
g(f.c.c.)/g 0(L12) two-phase microstructure, Figure 9.6. The Ta-rich precipitate-phase is
distributed homogeneously, to first order, in the grain interiors and at the grain boundaries.
Further analyses will be performed to determine it exact composition and crystallographic
structure of this precipitate phase, employing APT, TEM and high-resolution TEM.
Using TC-Python, the mobility descriptions of Co-Re in the current CHiMaD mobility

Alloy (at.%) Co Ni Al Cr Ta W Re Ru
Base 41.7 36 12.8 4 3.3 2.2 0 0
1Re 40.7 36 12.8 4 3.3 2.2 1 0

1Re1Ru 39.7 36 12.8 4 3.3 2.2 1 1

Table 9.1: Nominal compositions of Base, 1Re, and 1Re1Ru alloy
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Figure 9.4: (a) Characteristic microstructures of
the three alloys aged at 1000�C for 48h and 1000
h. (b) Partitioning coefficients of each element in
the base and 1Re alloys aged at 1000�C for 1000
h.

Alloy (at.%) Co Ni Al Cr V Ti Nb Ta B g 0 Areal Fraction (%)
10Ni-4Cr Bal. 10 5 4 3 2 1.5 1.5 0.08 32 ± 4
20Ni-4Cr Bal. 20 5 4 3 2 1.5 1.5 0.08 37 ± 3
30Ni-4Cr Bal. 30 5 4 3 2 1.5 1.5 0.08 49 ± 6
10Ni-8Cr Bal. 10 5 8 3 2 1.5 1.5 0.08 44 ± 8
20Ni-8Cr Bal. 20 5 8 3 2 1.5 1.5 0.08 45 ± 5
30Ni-8Cr Bal. 30 5 8 3 2 1.5 1.5 0.08 45 ± 2

Table 9.2: NiCr-series alloy nominal compositions (at.%)

database, developed by Campbell at NIST, is optimized based on experimental diffusion
profiles and interdiffusivity values. The mobility parameters are optimized by minimization
of the error between all experimental and predicted values.

9.2.3 W-Free Cobalt-based Superalloys
In an effort to decrease the density of Co-alloys, six new W-free Co-based superalloys were
studied, given by the compositions listed in Table 9.2, where for the first time, the three
Ta, Nb and V refractory metals are present simultaneously (at a combined level of 6 at.%),
in the absence of W and Mo. These low-density alloys expand on previously developed
2018-19 CHiMaD alloys, which had two refractory elements (either Ta+V or Nb+V), and
investigates additions of Ni and Cr. All six alloys display g + g 0 microstructures, with no
other precipitates, after 1000 hours of aging at 850�C. The alloys contain Ni (to stabilize
the microstructure and reduce alloy cost); Cr (to decrease lattice parameter misfit and
improve oxidation and corrosion resistance); Al, V, Ti, Nb, and Ta (as g 0-formers); and B
(for grain boundary strengthening). Based on these experimental findings, V is being added
to thermodynamic databases developed by Kattner and Campbell at NIST. Predictions
based on these databases will form the basis of new alloys to be studied experimentally.
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Figure 9.5: (a) 3D reconstruction of an APT tip from the Base alloy aged at 1000�C for 1000 h
with the proxigram across the g(f.c.c.)/g 0(L12-structure) interface. The isoconcentration surface
is at Co = 42.5%. (b) 3D reconstruction of an APT nanotip from the 1Re alloy aged at 1000�C
for 100 0h with the proximity histogram across the g(f.c.c.)/g 0(L12-structure) interface. The iso
concentration surface is at Co = 41%.

Figure 9.6: Low magnification SEM images of: (a) Base alloy; (b) 1Re alloy; and (c) 1Re1Ru alloy
aged at 1100�C for 48 h. The Ta-rich precipitate-phase appears as small white precipitates in the
three alloys.

Alloys were produced by arc-melting and homogenizing for 48 h at 1200�C. After ensuring
that the homogenized sample is single-phase, samples were aged at 850�C to 1000 h.
Figure 9.7a shows SEM micrographs of each alloy after the final aging time. In the 4-Cr
series, increasing the Ni concentration results in higher fractions of the g 0-phase. The 8-Cr
series maintains a near-constant g 0-area-fraction, independent of the concentration of Ni.

Lattice misfit was measured with a combination of synchrotron x-ray diffraction on aged
samples, and lab XRD on recrystallized and aged samples, as shown in Figure 9.7b. Lattice
misfits are between 0.6 and 1%, nearly independent of Cr and Ni content.

Isothermal creep tests were performed on specimens aged one week at 850 �C, as shown in
Figure 9.7c. All alloys exhibit power-law creep behavior at 850�C, with a stress exponent
of 10-12. The addition of Ni slightly improves creep resistance for all alloys. Increasing
Cr results in slightly improved creep resistance for alloys with 20 and 30% Ni, but worse
creep performance for alloys with 10% Ni.

Solvus, solidus, and liquidus transformation temperatures were measured with DSC, as
shown in Figure 9.8a. Solvus temperatures increase by 15-20�C per 10 at.% Ni addition,
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Figure 9.7: (a) Characteristic microstructures of each alloy after aging for 72 and 1000 h at 850 �C.
(b) Lattice misfit for each alloy at room temperature plotted as a function of composition. (c) Plot
of strain rate vs. compressive stress at 850�C for each alloy.

and 15-20�C as Cr doubles from 4 to 8 at.%, so that 30Ni-8Cr has the highest value:
1031�C. There is no clear trend for solidus and liquidus temperatures, but each alloy is
within ⇠15 �C of the others. Oxidation resistance was measured in a TGA at 850 �C for 20
h in laboratory air, as shown in Figure 9.8b which plots normalized mass gain as a function
of time.

Figure 9.8: (a) Characteristic microstructures of each alloy after aging for 72 and 1000 h at 850 �C.
(b) Lattice misfit for each alloy at room temperature plotted as a function of composition. (c) Plot
of strain rate vs. compressive stress at 850�C for each alloy.

Based on a preliminary result which showed that substituting 10 at% Fe for Ni in the
30Ni-4Cr/8Cr alloys maintained a stable g/g 0 microstructure, six additional allows were
created with increasing substitutions of Fe for Ni, for the same two levels of 4 and 8% Cr,
as shown in Table 9.3. All six alloys displayed a g/g 0 microstructure after aging 1000 h at
850�C, although high-Fe and -Cr alloys also formed TCPs at higher aging time, as shown
in Figure 9.9.

Isothermal creep tests were performed on specimens aged (168 h (1 week) at 850 �C, as
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Figure 9.9: (a) Secondary SEM images of g + g 0 region in all alloys at all aging conditions. (b)
Low-mag SEM image which shows TCPs in 18Fe-4Cr and (c) 18Fe8Cr after aging 1000h at 850�C.

Alloy (at.%) Co Ni Fe Al Cr V Ti Nb Ta B
12Fe-4Cr Bal. 18 12 5 4 3 2 1.5 1.5 0.08
14Fe-4Cr Bal. 16 14 5 4 3 2 1.5 1.5 0.08
18Fe-4Cr Bal. 12 18 5 4 3 2 1.5 1.5 0.08
12Fe-8Cr Bal. 18 12 5 8 3 2 1.5 1.5 0.08
14Fe-8Cr Bal. 16 14 5 8 3 2 1.5 1.5 0.08
18Fe-8Cr Bal. 12 18 5 8 3 2 1.5 1.5 0.08

Table 9.3: NiCr-series alloy nominal compositions (at.%)

shown in Figure 9.10a. Fe additions show a clear reduction in creep resistance. In 12Fe
and 14Fe, Cr addition increases creep resistance, but Cr reduces creep resistance in 18Fe,
likely due to accelerated formation of TCPs.

Solvus, solidus, and liquidus temperatures were measured with DSC, as shown in Figure
9.10b. Increasing Fe from 0Fe-30Ni to 12Fe-18Ni increases solvus by >150�C, and reduced
solidus and liquidus values by ⇠50-100 ºC. Fe additions continue to monotonically increase
solvus even up to 18Fe. The addition of 4 at.% Cr also slightly increases solvus by 5-10�C.
Solidus and liquidus values decreased by ⇠5 ºC with the addition of 4 at% Cr, but were
not affected by Fe in the range of 12-18 at.%.

Figure 9.10: a) Plot of strain rate vs. compressive stress at 850�C for each alloy. (b) DSC results
showing solvus, solidus, and liquidus temperatures for each alloy. (c) Compressive yield strength
vs. test temperature for each alloy.



86 Chapter 9. Cobalt-based Superalloys for High-Temperature Use

Alloy (at.%) Co/(Co+Ni) fraction Co Ni Ta Al
CoNi 0 0 0 87.5 0 12.5

CoNi 14 14 12.5 75.0 1.8 10.7
CoNi 31 32 27.5 60.0 3.9 8.6
CoNi 50 50 43.5 44.0 6.2 6.3
CoNi 69 69 60.0 27.5 8.6 3.9
CoNi 86 86 75.0 12.5 10.7 1.8
CoNi 100 100 87.5 0 12.5 0

Table 9.4: CoAlNiTa quaternary series nominal compositions (at.%)

Yield strength as a function of temperature was measured with a compression tester, as
shown in Figure 9.10c. Fe additions result in a weakening effect, but all six alloys show
strong anomalous yield strength with a peak around 800�C.

Seven quaternary alloys along the tie line between Ni-12.5Al and Co-12.5Ta, created prior
to 2021 at University of Cambridge by collaborators Prof. Stone and Prof. Jones, were
studied to establish whether a continuous g + g region exists, as shown in Table 9.4.

Microstructure for each alloy is shown in Figure 9.11, aged up to 1000 h at 750�C. Alloys
from 0CoNi to 69CoNi exhibit a two-phase g + g 0 structure, but 86CoNi and 100CoNi
show a g + l3 microstructure after homogenization. Upon aging at 750�C, the g matrix
forms g 0 precipitates. At longer aging times, the cubic-shaped g 0 phase forms discontinuous
precipitates with a lamellar shape.

Figure 9.11: Secondary SEM images for g + g 0 region in each alloy at each aging temperature

Solvus, solidus, and liquidus values were measured with DSC, as shown in Figure 6a and
show monotonic decrease in solidus and liquidus with increasing Co.

Lattice parameters for g and g 0 phases, which had been measured via neutron diffraction,
were fit with GSAS-II, to calculate lattice misfit and interfacial stress. Both lattice pa-
rameters increased with increasing Co, but the g 0 parameter increased more than the g
parameter, so that lattice misfit also increased with increasing Co. Interfacial stress also
increased with increasing Co, with the exception of 50CoNi, which has lower interfacial
stress than its neighbors.
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Figure 9.12: (a) DSC results for selected alloy. (b) Lattice parameters, lattice misfit, interfacial
stress for selected alloys.

9.2.4 Machine learning model for creep life
Additionally, an archival literature summary of mechanical properties in Co-based superal-
loys was created in 2020-21, which collected data concerning transformation temperatures,
lattice parameter misfit, microhardness, yield strength, and creep results from over 750
Co-based superalloys. These data, as well as CALPHAD predictions from NIST, are being
used to power a machine-learning model with the goal of predicting creep life of Co-based
superalloys for a given element composition, in collaboration with Dr. Campbell (NIST)
and Jesse Ji (NIST SURF student). The machine-learning model currently takes inputs
of composition with Magpie chemical descriptors (developed by Wolverton group) and
g/g 0 composition and volume fraction according to CALPHAD predictions, to correlate
with literature values of creep life calculated as time to 1% strain based on steady-state
strain rate at a particular stress and temperature. The algorithm randomly assigns 90% of
the datapoints as “training” data to build a model, then uses the remaining 10% “test” data,
which the model did not see, to evaluate its accuracy. The results of the model’s prediction
for this test data, compared to the true measured value of the test data, is shown in Figure
9.13.

Figure 9.13: (a) Plot of “test data” for creep time to 1% strain (measured values) vs. machine-
learning predicted values. Points which fall exactly on the blue y=x line are values which the
algorithm has perfectly predicted. (b) Error between predicted values and true values, for 100
random splits of test data verses training data.

In another study in collaboration with Kookmin U., the design goal is to create a microlattice-
architecture Co-based superalloy (Co-Ni-Al-W) by using a combination of extrusion-based
3D printing and pack cementation. To prevent Al depletion occurring during the creep test
in air (Figure 9.13a) that was an issue in the previous study as well as to improve the creep
performance, additional Al deposit was applied on an already homogenized Co-Ni-W-Al
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microlattice, followed by aging the sample. As shown in Figure 9.14b, the additional Al
deposit after homogenization achieved an Al-rich layer with a mean thickness of up to
⇠ 30µm which can act as an Al-reservoir for Al2O3 formation, while protecting the g/ g 0
microstructure from oxidation.

Figure 9.14: (a) Double logarithmic plots of secondary creep strain rate versus applied compressive
stress for Co-20Ni-6W-10Al and Co-18Ni-5W-13Al microlattices aged at 900 �C for 65 h and
compression tested at 850�C. (b) SEM and EDS mapping images showing the Al-rich top-layer on
cross-sections of struts of homogenized Co-20Ni-7W-9Al microlattices aluminized at 1000�C.

In a new 2021 industrial collaboration, the role of grain-boundary precipitates on the
creep property of a novel, commercial Co-Ni based superalloy are studied via compressive
creep tests on two different initial microstructures. Dominant species of grain boundary
precipitates were controlled by changing aging condition as shown in Figure 9.15a and
9.15b. The intragranular Vickers microhardness indicated that the amount and the size
of intragranular g 0 particles in both microstructures are almost identical. Compressive
creep tests at 800�/ 409 MPa indicated that the difference of grain-boundary-precipitation
species have a large influence on the creep properties, as shown in Figure 9.15.

Figure 9.15: (a) Schematic illustration of the heat treatment condition for the alloy studied. (b)
Backscattered electron images of the microstructures after 1-step-aging and 2-step aging conditions.

In a new project, Co-20Ni-11Al-8W (at.%) alloys, based on a composition provided by
NIST, were fabricated using blends of elemental powders via selective laser melting under
different laser input energy density. Relative density of printed alloys increases with
increasing laser energy density, as shown in Figure 9.16. Two samples per each energy
density were printed, whose relative density are marked as blue and red dots, respectively.
Microstructure of printed alloys were investigated. Nearly homogenized g microstructure
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Figure 9.16: Relative density of printed
Co-20Ni-11Al-8W (at.%) alloys as a
function of laser energy density.

was observed with occasional partially-melted W powders. Work is ongoing to homogenize
the alloys to achieve full g+ g 0 microstructure, and to measure mechanical properties

9.2.5 Predicting Phase Stability Using Machine Learning
For materials design, it is important to know the phase stability of the material to determine
its properties. For material systems that are less explored, it is time-consuming and costly
to generate sufficient experimental data to optimize the composition. Density functional
theory (DFT) calculations provide high fidelity data, but it is computationally expensive
to compute a wide range of complex compounds at elevated temperatures. Our goal
is to develop a surrogate model that can efficiently predict the phase stability of multi-
component material systems at finite temperature. Currently, we have fitted a preliminary
Latent Variable Gaussian Process (LVGP) model, which predicts formation energies per
atom with input data concerning composition, crystal system, and number of atoms. The
benefit of using the LVGP model allows for the categorical values (e.g., crystal structures)
to be mapped to a quantitative latent space, which can be analyzed for physical insights.
The training and testing datasets are collected from Materials Project and Open Quantum
Materials Database (OQMD). Six elements of interest are identified (Al, Co, Ni, W, Pb, Te)
and the dataset consist of pure elements, binary and ternary compounds of these elements.
Figure 5 demonstrates how the test dataset performs with the current LVGP model. The
relative root-mean-square error (RRMSE) ranges from 0.49-0.67, which will be further
improved on.

9.2.6 Machine learning in phase-field sensitivity analysis
For more accurate Co-based superalloy designs, a better understanding of how different
parameters influence the g 0 precipitate morphology is needed. A phase-field sensitivity
analysis is conducted on a ternary Co-Al-W alloy system with a focus on four parameters:
initial concentration (c0), double well barrier potential (w), gradient energy density co-
efficient (k), and lattice parameter misfit strain (emis f it). A Gaussian Process Regression
(GPR) model is used to fit an initial set of samples, which is then coupled with a Bayesian
Optimization (BO) process to suggest additional samples in an efficient manner. This pro-
vides a more data-driven approach for sensitivity analysis and creates a flexible surrogate
model compared to standard bi-linear fit. The BO approach is also a more efficient way
to update the GPR model iteratively. Figure 9.17 displays the final version of the GPR
surrogate models of the precipitate’s radius and morphology. From the surface plots, we
observe that c0 and w have the greatest influence on the precipitate radius and morphology,
respectively. The precipitate radius description is precise, and thus can be fitted with a low
noise tolerance. Alternatively, the precipitate morphology description has some variability
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due to irregular g 0(L12)-precipitates simulated. Therefore, the precipitate morphology
model needs a higher noise tolerance to avoid overfitting.

Figure 9.17: Gaussian Process Regression (GPR) model of a precipitate: (a) radius and (b)
morphology in terms of (left) initial concentration and double well barrier potential, and (right)
gradient energy density coefficient and lattice parameter misfit strain

9.2.7 Phase Field Modeling of Co-based superalloys
We completed phase field modeling of morphology evolution of three-dimensional Co-
based superalloy precipitates. Particular foci of the work were (i) using experimental or
first-principle data for bulk chemical free energy, element mobility and interfacial energy,
and (ii) investigate the sensitivity of precipitate size and shape to input parameters within
reasonable and physical ranges. We constructed a latin hypercube (see Figure 9.18 top) over
the following parameters space: initial Co-concentration c0, double-well potential barrier
w used for the phase field h , gradient energy coefficient k , and misfit strain emis f itThe
parameters h and k are directly related to the interfacial free energy and the interface
thickness. The phase field mobility, L, was kept in a range where the morphology evolution
is diffusion-limited; this covers a large range of L within which the results are insensitive
to L. Therefore, L could be excluded from the sensitivity analysis.
Figures 9.18 middle and bottom, show different precipitate morphologies varying the
gradient energy coefficient k and the misfit strain emis f it , respectively. Increasing k
increases the interfacial energy, which tends to drive the precipitate to a more spherical
shape. In contrast, increasing emis f it increases the elastic energy cost of the precipitate
and also drives it to a more cuboidal shape; if emis f it becomes too large, the energy cost of
forming an equilibrium precipitate is prohibitive, and the precipitate dissolves.
We constructed a response surface by fitting normalized output parameters for precipitate
shape and size to bilinear functions of the (normalized) input parameters. Figure 3 depicts
a graphical summary of the sensitivity analysis. This figure shows that the main drivers
for precipitate size are initial Co-concentration, and its product with barrier height w and
misfit strain emis f it . This dependence on initial concentration just expresses the fact that
the bulk chemical free energy is a main driver for the size of the precipitate. The drivers
for precipitate shape are more complicated. Main drivers here are barrier height w , to a
lesser extent misfit strain emis f it , and then various crossproducts of w and k with other
parameters. This expresses that the shape is largely driven by a competition between elastic
energy (primarily represented by the misfit strain) and the interfacial energy (w and k):
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Figure 9.18: (top)Parameters for the latin hypercube. (middle) Equilibrium precipitate (in red) for
different gradient energy coefficient k . The other parameters are those of Sample 1 in Table at top.
(bottom) Equilibrium precipitate for different misfit strain emis f it the other parameters are those of
Sample 1 in Table at top.

increasing the misfit strain drives the shape more cuboidal, while increasing the interfacial
energy (which is proportional to k

p
w ) tends to drive the precipitate shape more spherical.

A manuscript is under review with Acta Materialia.

Figure 9.19: . Sensitivity coefficients for precipitate size and shape. Negative values means that
increasing the parameter or parameter product decreases the precipitate size or makes the shape
less cuboidal.

After completing the work on the sensitivity analysis of a single precipitate, we turned
our focus on the evolution of multiple precipitates and their responses to applied stresses.
Roughly speaking, a small misfit strain tends to make particles coalesce and yields a
relatively weak respons to applied uniaxial compressive or tensile stress. In contrast, a
larger misfit strain yields larger response to applied uniaxial stresses, and whether or not
the precipitates coalesce depends on the stress (compressive or tensile). Compressive
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stress flattens the precipitates and makes them coalesce more easily, while tensile stress
elongates them (along the stress) and tends to prevent them from coalescing. We are
finishing analysis of the result and are preparing a manuscript for submission.

Inspired by the initial sensitivity analysis of the single-precipitate shape and size, we started
a project using AI-inspired tools to more systematically improve the sensitivity analysis.
We used Optimized Experimental Design (OEM), a version of active learning methods that
is particularly suited for constructing surrogate models when the available data set is small
and the acquisition of new data points is expensive. OEM is iterative: based on a surrogate
model constructed from N data points, the OEM can give good guidance for where in
parameter space one should acquire data point N+1. In our case, we constructed surrogate
models using Gaussian Process Regression, which includes a flexible set of basis functions,
and also produces an uncertainty metric. We used the Expected Improvement approach
for acquisition, which basically seaks to minimize the uncertainty in the surrogate model.
Using an initial set of data points from the earlier sensitivity analysis, we expanded the
data set using OEM. The surrogate model for the response function is markedly different in
some respects from the earlier bilinear fit. We are currently finishing analyzing the results,
and we are preparing a manuscript.



10. High-Performance Composite Design for Extreme Environments

Kenneth Shull (NU), Sinan Keten (NU), Ange-Therese Akono (NU)

Christopher Soles (NIST), Stephan Stranick (NIST), Jack Douglas (NIST), Frederick
Phelan (NIST), Jan Obrzut (NIST), Jeremiah Woodcock (NIST), Gale Holmes (NIST),
Edwin Chan (NIST), Lilian Johnson (NIST), Ketan Khare (NIST), Ami Ahure Powell
(NIST)

10.1 Design Goals

The goal of the CHiMaD High-Performance Composite Design for Extreme Environments
use case group is to develop and utilize a materials design strategy for fiber reinforced
polymer matrix composites used in extreme environments, including ultra-low temperatures
or very high strain rates. Of particular interest is cryogenic storage applications where
mechanical toughness and stiffness must be maintained at temperatures from -200 �C to
200 �C. A secondary goal involves design for composites exposed to aqueous or humid
environments for long periods of time. A generalized design chart for high-performance
composite design with potential applications in cryogenic liquid storage, infrastructure and
protection applications is shown in Figure 10.1.

Specific design goals of the use case group towards cryogenic liquid storage include the
following: (1) A matrix resin with a fracture toughness, KIC, > 1.5 MPa-m1/2 throughout
the temperature range of -100 �C to 200 �C; (2) Development of model sizings for carbon
fibers that can be deposited from aqueous suspension, but which adsorb less that 20 wt%
water at a relative humidity of 75%; (3) Composite systems for which the maximum
interfacial shear stress remains less than 50 MPa during temperature cycling between -200
�C and 200 �C.

The CHiMaD High-Performance Composite Design for Extreme Environments use case
group is also interested in quantifying the equilibrium content of cryogenic liquids adsorbed
within the material and within model fiber treatments based on cellulose nanocrystals.
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Figure 10.1: Systems design chart for high-performance composite design for extreme environments

10.2 Research Accomplishments

10.2.1 Modeling the Single Fiber Fragmentation Test
The single fiber fragmentation test is the among the most powerful methods for charac-
terizing the interfacial strength of the fiber/matrix interface in fiber reinforced polymer
matrix composites. As shown in Figure 10.2a, the experiment involves applying a tensile
force to a polymer sample in which a single fiber is embedded. Recent advances at NIST
(Holmes and Powell) have led to the development of an automated experimental protocol
that is able to generate much more data from a single experiment, including the full history
of the time and location at which different breaks appear. Akono and Shull are working
with the NIST team to develop nonlinear viscoelastic models needed both to extract the
true interfacial stress during complex loading conditions, including those that accompany
extreme excursions in the temperature. An example model fit to a load data obtained from
a single fiber fragmentation test is shown in Figure 10.2b.

10.2.2 Glassy Polymer Dynamics in the Megahertz Frequency Regime
Small molecule plasticizers are often used to modify the local-scale dynamics of glassy
polymers, which in turn affects the glass transition behavior, fracture toughness and other
properties that are relevant to polymer matrices used in composite systems. These dynamics
are commonly assessed by dielectric measurements, which requires that a coupling between
mechanical and dielectric properties exist in the material, and that the material not be
electrically conducting. The NIST group (Douglas, Obrzut, Soles) has been very involved
in this previous work. Shull has collaborated with NIST colleagues to obtain quantitative
information in the high frequency regime with quartz crystal resonators. This technique
measures the material response directly at a fixed angular frequency of ⇡ 108 s�1, and was
used to probe the temperature-dependent dynamics of polycarbonate blended with dioctyl
terephthalate (DOTP) (Figure 10.3a). The thin film geometry used in these experiments
enables a range of DOTP concentrations to be investigated in a single experiment, by
progressively driving off the small molecule during successive temperature ramps (Figure
1b). The modulus (Figure 10.3c) and phase angle (Figure 10.3d) data for the PC/DOTP
systems show the following trends with increasing DOTP weight fraction, as indicated by
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Figure 10.2: a) Single fiber fragmentation test showing a sequence of images at increasing applied
step strains; b) Experimental and modeled values of the stress during the application of a series of
step strains.

the arrows in Figure 10.3:
1. DOTP increases the modulus of PC in the glassy regime, an ’antiplasticization’ effect

that has been previously observed in polycarbonate.
2. DOTP decreases the glass transition, seen as an increase in the phase angle at higher

temperatures.
3. DOTP decreases the magnitude of the sub-Tg relaxation at 50 �C, resulting in decrease

in the peak in the phase angle centered at this temperature.
Because the technique employed here measures the mechanical response directly, it can be
used to study electrically conducting materials, including those with common conductive
nanofillers like carbon black. Also, the technique measures properties at a time scale
of tens of nanoseconds, which is accessible by some of the simulation techniques being
developed within the use case and described in more detail below.
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Figure 10.3: Temperature-dependent rheological data obtained for polycarbonate/dioctyl tereph-
thalate films (structures in part a) with the quartz crystal microbalance: b) temperature ramps
used to generate temperature-dependent data for a range of DOTP concentrations; c) temperature
dependence of the modulus-density product at a frequency of 15 MHz; d) temperature dependence
of the viscoelastic phase angle at 15 MHz.
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10.2.3 Development of Coarse-graining Methodologies for Computational Inves-
tigations of Polymer Deformation
Creating coarse-grained models greatly reduces computational expense, but at the cost of
the work required to parameterize these models. This is known to be a lengthy and intensive
process that can take months of labor for even relatively simple systems. This limits the
complexity of the materials that can be coarse-grained. Machine-learning techniques,
including Gaussian process surrogate models, were implemented by Keten to parameterize
nonbonded interactions for coarse-grained epoxy resins (see Figure10.4).

Figure 10.4: Overview of the application of machine learning techniques to parameterization and
calibration of non-bonded interactions for coarse-grained cross-linked epoxy resin systems.

These methods reduce the effort required for a complex parameterization such as coarse-
grained cross-linked epoxy resin models, and also increase the accuracy of the models and
material behavior predictions. As a result, the feasible region of coarse-grained molecular
dynamics simulations is expanded, enabling exploration of even more material designs.

10.2.4 Effective potential for polymer-grafted nanoparticles

Figure 10.5: Representative potential of
mean force between two contacting polymer-
grafted nanoparticle surfaces.

Polymer-grafted nanoparticles are a develop-
ing material class that show great promise for
creation of tailored materials. Keten has ex-
plored the effects of variations in the length and
density of polymer chains grafted onto a repre-
sentative nanoparticle surface, using chemistry-
specific parameterization to propose a means
of coarse-graining models of entire polymer-
grafted nanoparticles (PGNs) for use in molecu-
lar dynamics simulations. Tensile and compres-
sive simulations were performed, and the poten-
tial of mean force (PMF) was used to character-
ize the response, as this reflects the interaction
energies among the polymer chains (see Figure
10.5). The application of coarse-graining proce-
dures to polymer-grafted nanoparticles is antic-
ipated to reduce computational time required to
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simulate these systems by 6-7 orders of magnitude.

10.2.5 Data Centric Materials Design via Mixed-Variable Bayesian Optimization
Chen has developed a data-centric mixed-variable Bayesian Optimization framework for
design of complex material systems with both qualitative and quantitative variables. This
has been further extended as a data centric design framework to concurrently identify
optimal composition and microstructure in design of polymer nanocomposites. Polymer
nanocomposites have the potential to be widely used across multiple industries. Tailoring
nanocomposites to meet application specific requirements remains a challenging task,
owing to the vast, mixed-variable design space that includes composition (i.e. choice of
polymer, nanoparticle, and surface modification) and microstructures (i.e. dispersion and
geometric arrangement of particles) of the nanocomposite material. Modeling properties
of interphase, the region surrounding a nanoparticle, introduces additional complexity to
the design process and requires computationally expensive simulations. As a result, previ-
ous attempts at designing polymer nanocomposites have focused on finding the optimal
microstructure for only a fixed combination of constituents. With our approach, optimal
composition and microstructure can be identified concurrently. Our proposed framework
(Figure 10.6) integrates experimental data with state-of-the-art techniques in interphase
modeling, microstructure characterization & reconstructions and machine learning. Our
proposed Latent Variable Gaussian Processes (LVGPs) quantifies the lack-of-data uncer-
tainty over the mixed-variable design space that consists of qualitative and quantitative
material design variables. The design of electrically insulating nanocomposites is cast as
a multicriteria optimization problem with the goal of maximizing dielectric breakdown
strength while minimizing dielectric permittivity and dielectric loss. Within tens of sim-
ulations, our method identifies a diverse set of designs on the Pareto frontier indicating
the tradeoff between dielectric properties. These findings project data centric design,
effectively integrating experimental data with simulations for Bayesian Optimization, as
an effective approach for design of engineered material systems.

Figure 10.6: Data centric design framework for polymer nanocomposites.





11. Phase Field Methods

Olle Heinonen (ANL), Peter Voorhees (NU)

James Warren (NIST), Jonathan Guyer (NIST), Daniel Wheeler (NIST), Trevor Keller
(NIST)

11.1 Design Goals

The goal of this tool group is broadly to develop quantitatively predictive phase field
models and efficient algorithms, and to apply them to a range of materials problems,
such as grain growth, solidification, and coarsening. One particular goal is to develop
benchmark problems for phase field modeling that can be used by developers to benchmark
accuracy of codes, and as pedagogical tools for researchers who are entering the field.

11.2 Research Accomplishments

11.2.1 Benchmark Problems
We finished work on the nucleation benchmark problems. A manuscript was submitted to
Comp. Mat. Sci. and was accepted and published ("Phase field benchmark problems for
nucleation", W. Wu, D. Montiel, J.E. Guyer, P.W. Voorhees, J.A. Warren, D. Wheeler,
L. Granasy, T. Pusztai, and O.G. Heinonen, Comp. Mat. Sci. 193, 110371 (2021)).
Based on discussions in the Phase Field Workshops, we started work on a benchmark
problem that focuses on the effects of anisotropic surface energy. The idea is to use a
Cahn-Hilliard framework with a free energy that is expanded in higher-order derivatives
in the conserved order parameter. By restricting the derivatives to a specific symmetry
(eg tetragonal in three dimensions, or rectangular in two dimensions), the effect is a
surface energy that is anisotropic with the designated symmetry. The advantage of this
approach in contrast with approaches that use spherical harmonics in the gradient director
is that the resulting system avoids potentially unphysical effects. The disadvantage is
that higher-order derivatives necessarily make numerical implementations a bit more
complicated. This is especially the case for finite-element weak formulations, where the
higher-order derivatives make significant contributions to residuals and Jacobians, and
higher-order shape functions have to be used. However, modern code frameworks for

https://www.osti.gov/pages/biblio/1787868
https://www.osti.gov/pages/biblio/1787868
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finite-element methods typically include high-order shape functions, and this formulation
of the benchmark problem using higher-order derivatives is pedagogically and technically
a good way to approach the use of higher-order shape functions.

11.2.2 Phase Field modeling of Additive Manufacturing

The velocities of interfaces during additive manufacturing are in the regime where the
interfaces are likely not in local equilibrium. Thus, Voorhees group has developed a com-
putationally efficient phase field model that allows the degree of interfacial nonequilibrium,
specifically solute trapping and interfacial temperature, to be controlled. The finite solid-
liquid interface width in phase-field models leads to non-equilibrium effects, including
solute trapping. Prior phase field modeling has shown that this extra degree of freedom,
when compared to sharp-interface models, results in solute trapping that is well captured
when realistic values are employed. Increasing the interface width, which is desirable for
computational reasons, leads to artificially enhanced trapping thus making it difficult to
model departure from equilibrium quantitatively. In the present work, we develop a phase-
field model in which non-equilibrium effects such as solute trapping, drag and interface
kinetics can be introduced in a controlled manner. Performing an asymptotic analysis of
the model, an analytical expression for the diffusion potential jump is derived which allows
tuning of the model parameters from experiments, atomistic simulation, or sharp interface
theories to obtain correct trapping while using significantly larger interface widths. Tuning
the kinetic coefficient, in turn, controls the energy dissipated in solute drag. The model is
applied to Si-9 at% As and Ni-5 at% Cu systems and the numerical performance of the
model is highlighted through convergence of partition coefficient and interface temperature
for different interface widths. A comparison with the other phase-field models suggests
that interface width of about two to seven times larger than current best-in-class models
can be employed depending upon the material system at hand leading to a speed-up by a
factor of W d+2, where W and d denotes the interface width and dimensions, respectively.
Therefore, increasing the interface width by a factor of two speeds up the computation time
by a factor of 16 in two dimensions and 32 in three dimensions. This implies a tremendous
gain in computation time when the model is applied to simulate microstructures in two
and three dimensions.

Figure 11.1: (a) The solute segregation profiles as a function of solute trapping parameter A for
the Si-9 at% As system. (b) Comparison of the partition coefficient (kv) with velocity (v) and
the permissible interface width (W) obtained from the present work and previously developed
phase-field models of Ahmad et al. (Phys. Rev. E, 58, 3436, 1998), Kim-Kim-Suzuki (Phys. Rev.
E, 60, 7186, 1999), Pinomaa and Provatas (Acta Mater., 168, 167, 2019) and experiment of Kittl et
al. (Acta Mater., 48, 4797, 2000). (c) Comparison of the interface temperature. The present model
allows us to tune the amount of energy dissipated in terms of solute drag.
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Figure 11.2: (left) An isotropic multi-order-
parameter simulation of grain growth, showing all
trijunctions having nearly-120 angles. (right) Sim-
ulation from the same initial condition, but using
our orientation-field model with misorientation-
dependent boundary energy and mobility, and
inclination-dependent energy with cubic symme-
try. The green arrows mark low angle grain bound-
aries which are lower in energy and therefore have
a pronounced impact on the resulting morphology
and trijunction angles.

11.2.3 Orientation-field model for grain growth
Recent advances in experimental measurements of grain growth highlight the need to
account for crystallographic and topological dependence of grain boundary properties
when modeling grain coarsening. The grain boundary energy and mobility can both depend
on the five crystallographic degrees of freedom; this dependence must be included in phase
field models of grain growth. Voorhees group has developed an orientation-field model
for grain growth that allows for dependence of boundary properties on crystallography.
The model uses a single-well potential to avoid the liquid phase, removing wetting effects.
We demonstrated that this model reproduces analytical triple junction dihedral angles,
has no anomalous trijunction drag, and reproduces Wulff shapes for the case of grain
boundary energy anisotropy with cubic symmetry. We demonstrate a pronounced effect on
grain boundary evolution when including misorientation dependence of the grain boundary
energy, particularly when many low-angle grain boundaries are involved (Figure 11.2).

This model shows promise for use in large scale simulations of grain coarsening in a wide
range of systems. Because the grain orientation is tracked by a single orientation field
variable, the computational burden is lessened compared to multi-order-parameter models,
particularly when simulating many grain orientations. In addition, the model has flexibility
for tuning the dependence of the grain boundary energy and mobility with addition of extra
parameters, allowing for its use in high-throughput characterization of grain boundary
properties by comparison to time-resolved x-ray tomography experiments.

11.2.4 PFHub Website
PFHub is a community effort spearheaded by the Center for Hierarchical Materials Design
at Northwestern University and the National Institute of Standards and Technology in
support of phase-field code development. The current PFHub deployment focuses on
improving cross-collaboration between phase-field code developers and practitioners by
providing a standardized set of benchmark problems and a workflow for uploading and
comparing benchmark results from different phase-field codes.

PFHub relies heavily on GitHub infrastructure as well as various third party apps to
support its web deployment and upload workflow. PFHub is transitioning away from a
Javascript / app based stack to a GitHub Actions / Python based stack. This will reduced
the maintenance overhead associated with supporting the PFHub effort and allow broader
engagement. Figure 3 shows a schematic of the current PFHub framework and upload
workflow.

https://pages.nist.gov/pfhub/


102 Chapter 11. Phase Field Methods

Figure 11.3: Schematic overview of the PFHub framework for building scientific research portals,
simply.

Recent activity has focused on the transition to a more systematic workflow relying on a
set of tools that are commonly used in research software. In particular, the infrastructure is
being ported to a combination of GitHub Actions, Jupyter Notebooks, Pandas and Plotly.
These tools are all widely used across the research software development community and,
thus, exploring PFHub data will be more accessible to a wider audience.

The following bullets highlight progress towards the PFHub transition as described in the
previous paragraph:

• Implementation of a Python module that facilitates aggregation of data using Pandas
and subsequent plotting with Plotly.

• Transition the nucleation benchmark aggregation page from using the JavaScript
Plotly library to the Python Plotly library from within a Jupyter Notebook. As this
process is now complete, subsequent transitions from JavaScript to Ploty with be
straightforward.

• Implement a Cachix service to store the packages and dependencies used by PFHub.
This allows for fast deployment on all continuous integration systems.

• New uploads from two new phase field codes, [Symphas] and [MEUMAPPS]. The
code developers cited PFHub in their initial publications about the codes. The
developers described PFHub as providing considerable assistance in verifying and
validating their codes.

• Moved the data processing app used by PFHub to Heroku from Google App Engine.
This facilitated the use of memcache to cache the frontend views of the data making
loading data much faster. However, this change will be redundant once the transition
from JavaScript to Python is complete.

11.2.5 CHiMaD Phase Field Workshop Series
We held two workshops, PF XI and PF XII in April/May of 2021 and Nov. 2-4, 2021.
Because of COVID restrictions, the workshops were both virtual. Both these workshops
were very well attended with between 50 and 70 participants in each session. PF XI
focused mainly engaging the broader community and highlighting phase field work on
the forefront with two invited presentations per day spread over four days plus a virtual
poster session highlighting work by graduate students and postdocs. The speakers were
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literally from around the world (Germany, Finland, India, Canada) and for the first time we
also had a speaker from a commercial software developer/vendor, COMSOL. PF XII was
focused on action-items that emerged during discussions in PF XI, in particular benchmark
problems (new problems, cleaning up older problems on PFHub) and PF Best Practices.
The workshop also featured a session with brief presentations by postdocs and students.
The discussions were lively and engaging with very concrete outcomes and actions.
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12.1 Design Goals
The design goal of the Uncertainty Quantification of Phase Equilibria and Thermody-
namics (UQPET) tool group is to develop at least one publicly available software able to
quantify uncertainty and evaluate quality of thermodynamic models (with a focus on phase
equilibrium diagrams). To achieve the goal, the main objectives are:

• Target minimum 3 applications that include unary and binary systems with impact
on CHiMaD use groups, the materials science community and industry. Extend to 1
ternary system pending upon availability of effort and computational resources.

• Build a community of at least 20 uncertainty quantifiable software users, with a
focus on the UQPET software. The tool group has already developed close collabo-
rations regarding uncertainty quantification (UQ) adoption with NIST, QuesTek and
commercial CALPHAD companies such as ThermoCalc and CompuTherm.

• Coordinate data analysis and curation with material databases and data analysis tools
at NIST and CHiMaD (MDF).

• Enhance awareness regarding the UQ capabilities available from UQPET and the
positive impact on material design via at least 2 UQPET workshops.

Figure 12.1 shows the core methodology used by the UQPET tool group to evaluate
uncertainty.

12.2 Research Accomplishments
12.2.1 Bayesian automated weighting of simulated and experimental data

In 2021, we continued the development of methods for estimating uncertainty in simu-
lated sources (density functional theory and molecular dynamics) of data for CALPHAD
thermodynamic modeling and appropriately weighting them alongside experimental mea-
surements. This was realized in a journal article published in Materialia (graphical abstract
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Figure 12.1: Core methodology used to quantify uncertainty of data and material models.

shown in Figure 12.2 using aluminum as a case study. Aluminum is an important element
for several multi-component alloys and was hence chosen as a case study. The end product
of the work was a thermodynamic model for aluminum with quantified uncertainty derived
for the solid phase (0 K to 933.5 K) as well as the liquid phase (933.5 K to 1600 K) and an
illustration of how a Bayesian approach can be used to select and appropriately weight data
from both experimental and simulated sources. Regarding the data sources in aluminum,
past assessments have shown that experimental data for the liquid phase of aluminum is
more uncertain than that of the solid phase because of measurement difficulties at high
temperature. Furthermore, datasets had been excluded in past assessments because of high
deviations between datasets (more than 5%). Hence, simulated data was considered as a
source to supplement the existing experimental datasets. MD derived enthalpy data for
the liquid was included in addition to DFT computed heat capacity data and MD derived
enthalpy data for the solid. Furthermore, this was the first study known to the research
team to include uncertainties on simulated data sourced from DFT and MD, alongside all
experimental datasets and their uncertainties, towards inferring a thermodynamic model
with uncertainty quantification from the aggregated dataset of DFT+MD+experiments.
Notably, experimental datasets were not excluded because they strongly deviated from the
other datasets. Instead, all were included with their estimated uncertainty and the final
weights were determined as part of the Bayesian inference (Bayesian automated weighting
approach of Paulson et al.) To supplement the experimental data sets, candidate lists of
simulated data sources were compiled. Among the candidate simulated data sources, data
set selection was performed on the MD enthalpy datasets for the liquid phase because
of deviations in melting point prediction between experiment and simulated data. This
presented the challenge of selecting the MD enthalpy dataset most compatible with the ex-
perimental datasets, towards building an aggregated model inferred from both experiments
and simulation. This MD enthalpy dataset selection was done in the following manner: for
the liquid phase, candidate model forms of constant heat capacity and linear heat capacity
were compared using Bayesian model selection, i.e, the marginal likelihood ratio (Bayes
factor) was used to determine which model form was most supported by the data. The
Bayesian model selection was first performed considering the experimental datasets alone
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and the conclusion was that the constant heat capacity was most supported by the exper-
imental datasets. A similar Bayesian model selection was then performed, considering
one MD enthalpy dataset at a time. In only one case (using the MD enthalpy dataset
MIS1999), the constant heat capacity model was most supported, and hence, MIS1999
was selected for developing the aggregated model with experimental datasets. Bayesian
model selection through the marginal likelihood ratio (Bayes factor) was used to assess
the model form most supported by a dataset. Finally, this study compared thermodynamic
models built from the different selections of data-source-groups (only experiments, only
simulations, and an aggregation of both) and showed the impact of neglecting one type of
data-source. We found that the aggregated model agreed best with all the available data
and was within 3 J/mol.K of commercially used thermodynamic models such as the SGTE
and HSC Chemistry.

Figure 12.2: Graphical abstract showing sources of data and the final model: aggregated (green),
experiments alone (orange), and simulation alone (blue).

This work involved the generation and collection of simulated thermodynamic data for
aluminum. The datasets can be found on github at https://github.com/npaulson/
UnaryBayes/blob/master/data_process/aluminum_DFT_MD_Experiments_Supplement.

xlsx in addition to experimental data collected for aluminum in past publications. The
excel spreadsheet provides both the datasets with their estimated uncertainties and the
rescaled uncertainties obtained as part of the Bayesian automated weighting. Further, the
spreadsheet is also available on the MDF at https://doi.org/10.18126/to2p-lmot.
The paper also describes the uncertainty estimation approaches used for the DFT and
MD datasets. For both DFT and MD, only epistemic uncertainties were estimated. For
DFT, these epistemic uncertainties were estimated from the choice of exchange-correlation
functional and DFT input parameters. For each MD dataset, the epistemic uncertainty was
estimated using the method of block-averaging. Notably, these were uncertainty estimation
approaches and the goal of this work was not to find the most accurate uncertainties or
compare approaches to estimation. Rather, the goal of the work was to generate simulated
datasets, estimate their uncertainties from known sources, then infer a model with Bayesian
automated weighting, and finally observe the rescaled uncertainty in the context of all
the other datasets included in the inference. This provides powerful insight into how
simulated data sources with their estimated uncertainties can be included alongside
other experimental data sources and their uncertainties towards inferring an aggre-
gated model with quantified uncertainty for any property that has a candidate list of
model forms. With regards to the candidate model forms for heat capacity and enthalpy:

https://github.com/npaulson/UnaryBayes/blob/master/data_process/aluminum_DFT_MD_Experiments_Supplement.xlsx
https://github.com/npaulson/UnaryBayes/blob/master/data_process/aluminum_DFT_MD_Experiments_Supplement.xlsx
https://github.com/npaulson/UnaryBayes/blob/master/data_process/aluminum_DFT_MD_Experiments_Supplement.xlsx
https://doi.org/10.18126/to2p-lmot
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for the solid phase, segmented regression with the Debye or Einstein for low-temperature
effects were compared, while for the liquid phase, a constant heat capacity was compared
with a liquid heat capacity model.

Figure 12.3: Simulated data sources and their
estimated uncertainty (a) DFT heat capacity data
generated in this work (b) compared with DFT in
literature and SGTE, and (c) MD enthalpy data
generated in this work.

With regards to sources of simulated data,
heat capacity data from density functional
theory calculations and enthalpy data from
molecular dynamics simulations were con-
sidered. Heat capacity data with uncer-
tainty was estimated for three different DFT
approaches (shown in Figure 12.3a,b), with
the Bayesian Error Estimation Functional
(BEEF) notably having the highest uncer-
tainty estimates among the three. In blue,
is heat capacity data calculated in this work
and with uncertainty estimated using the
difference between two exchange correla-
tion functionals known to overestimate and
underestimate the lattice parameters of alu-
minum. The question of selecting a com-
patible molecular dynamics source dataset
was addressed in the paper by first creat-
ing a candidate list of MD interatomic po-
tentials from the many available Al-based
interatomic potentials on the NIST inter-
atomic potential repository. This candidate
list was generated by choosing interatomic
potentials whose literature reported melting
points were within 150 K of the experimen-
tal melting point of aluminum (933.5 K).
Figure 12.3c) shows the enthalpy data as
a function of temperature for these candi-
date interatomic potentials, with the legend
indicating their respective melting points.
The candidate list was diverse in that it in-
cluded interatomic potentials developed for
Al and its binary alloys using the embedded
atom method (EAM) and machine learning
potentials (MLP). Bayesian model selec-
tion through the marginal likelihood ratio
(Bayes factor) was used to find the model
most strongly supported by the data. When considering experimental data alone, we found
that the constant heat capacity model was the most supported. Out of this candidate list
of enthalpy data, we found that the enthalpy data generated by the interatomic potential
according to Mishin (EAM Tm = 1043 K), strongly supported the constant heat capacity
model over the linear heat capacity model. This shows that using the predicted melting
point is not a sufficient guide to dataset selection. Bayesian model selection resulted in a
stronger ground for selection and avoided biasing the results based on possible limitations
in the physics of a particular simulated source of data. We note that in this approach to
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selecting an MD enthalpy dataset, using the Bayesian model selection, we assumed that
the model best supported by experiments (in this case, constant heat capacity) could be
considered as closest to the ground truth. We note that the choice to trust the experiments
more than simulation was justified for the particular case of aluminum. Compared to other
metals, there is lesser uncertainty in experimental measurements of the melting point as
well as the enthalpy of liquid aluminum.

Finally, this work presented the rescaled uncertainties of each dataset and compared how
each experimental data and simulated data source fared against each other, in the different
contexts of experiments alone, simulations alone, and the aggregated model. We note
that the rescaled uncertainty did not differ by more than 1 J/mol.K between each of those
data selection scenarios in the case of both experimental and simulated heat capacity data,
while the rescaled uncertainty differed by 2000 J/mol for the MD generated enthalpy. Of
the simulated data sources, the Bayesian error estimation functional from DFT (shown as
GUA2019 in the Figure 12.4a had the least rescaling out of all of the methods (DFT and
MD). The MD enthalpy dataset (MIS1999) was rescaled the most in the liquid phase in the
aggregated model.

Figure 12.4: Mean uncertainty in heat capacity for (a) solid and (b) liquid datasets, and mean
uncertainty in enthalpy for (c) solid and (d) liquid phases.

12.2.2 Propagation of uncertainty from unary to binary phase diagram
A method to propagate uncertainty from a unary posterior onto a binary phase diagram was
developed and a manuscript is in preparation in the context of the binary Cu-Mg system.
The interest in the propagation of uncertainty arose from the community workshop report
compiled at the start of 2021. Some preliminary results, which were presented at the
CHiMaD Annual Meeting 2021 are shown below. As shown in Figure 12.5, propagation
means sampling the posterior distributions of each unary parameter and propagating it
during the inference of the binary phase diagram. Prior to the propagation, both the
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thermodynamic model for the unary and the binary are inferred independently of each
other. The starting point for the propagation is the binary phase diagram without any unary
propagation. As shown in Figure 12.6, to visualize the effects of the propagation, we
plot the phase fractions of the phases. We then evaluate differences of the phase fractions
between N iterations of the unary propagation and the initial phase diagram with no unary
propagation. The phase fraction is itself a distribution and is characterized by a mean and
95% Bayesian credible interval (CI). They indicate that there is an increase in uncertainty
in the overall phase diagram when uncertainty in the unary thermodynamic functions is
propagated.

Figure 12.5: Uncertainty Propagation Workflow: First, 1. unary model (eg: Cu) and 2. binary phase
diagram posterior distributions are inferred independent of each other, followed by 3. iteratively
sampling and propagating N samples from the unary posterior resulting in a superimposed phase
diagram (4) where uncertainty in the phase boundaries increases with 325 samples of unary posterior
propagation (blue) over the phase diagram without unary propagation (orange).

Figure 12.6: Visualizing impact of unary uncertainty propagation through the a) phase fraction of
each phase at 1000 K and b) difference in the 95% CI of the phase fraction of the liquid phase at
T=1000 K at different iterations of the propagation.
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12.2.3 Community workshop report on uncertainty quantification for thermody-
namic properties
Following up on the successful international and all-virtual CHiMaD UQPET workshop in
2020, we put together a workshop report compiling the thoughts and insights of academic
researchers in national laboratories and universities as well as engineers and leaders of
commercial thermodynamic software companies and materials design companies. The
report examined the meaning of uncertainty quantification in the context of thermodynamic
property models and presented the existing open-source UQPET python package and
its commercial counterparts. The importance of uncertainty quantification in materials
design decision making was also highlighted. Gaps and opportunities were identified in i)
uncertainty propagation from thermodynamic models of the elements to multi-component
material systems, ii) thermodynamics of thermoelectrics, iii) challenges with experimental
measurements of thermodynamic and kinetic information for alloy design, and iv) advances
in Bayesian approaches to uncertainty quantification. The report was internally reviewed
and released at Argonne and NIST and is available at CHiMaD. It presents a continued
community effort and roadmap for implementing uncertainty quantification techniques for
materials design from the view of thermodynamic property modeling.
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13.1 Design Goals

The CHiMaD Artificial Intelligence and High-Performance Data Mining tool group aims
to accelerate materials property prediction, discovery, and design by: (1) Developing data-
driven analytics for materials science to enable automatic, fast, and accurate extraction of
PSPP (processing-structure-property-performance) relationships; (2) Actively bringing
deep learning advances in materials science; (3) Design and developing software deploying
materials informatics for the community to use and build upon.

13.2 Research Accomplishments

13.2.1 Cross-property Deep Transfer Learning Framework for Enhanced Predictive
Analytics on Small Materials Data
Although the size and availability of materials datasets is increasing, the field of materials
science is still in the small data regime for the most part. This small data problem is
especially prevalent for experimental materials data, which is often significantly more
expensive and time-consuming than simulations. Thus, building accurate predictive models
for small experimental datasets is a major and common challenge in materials science.
Transfer learning is usually used in such cases, but a key limitation of existing transfer
learning models is the need for the availability of a large source dataset of the same property
as the target property, which is not an issue for some properties like formation energy, but
there are numerous other materials properties such as exfoliation energy, for which large
source datasets are not readily available to directly perform transfer learning. In order
to address this limitation, Agrawal and Choudhary, in collaboration with Choudhary,
Tavazza, and Campbell, have developed a cross-property transfer learning framework,
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wherein the source and target properties are allowed to be different. In addition to the
fine-tuning method usually used for transfer learning, feature extraction-based transfer
learning was also explored, which uses the source model to extract features or semantic
vectors on the target dataset, which could then be used as alternate representations of
the materials in the target dataset to build any machine learning or deep learning model
on top of it. The cross-property transfer learning models were evaluated on 39 different
target properties and were found to be more accurate than scratch models in 38/39 cases
when both type of models used only raw elemental fractions as input. In a more stringent
test for cross-property transfer learning models, only the scratch models were allowed to
use more informative physical attributes as input, and the cross-property transfer learning
models still performed better than scratch models in 27/39 cases, underscoring the wide
applicability and usefulness of the framework to tackle the small data challenge in materials
science (Figure 13.1). This work was recently published in Nature Communications.

Figure 13.1: The top-left subfigure illustrates the concept of cross-property deep transfer learning,
and the top-right subfigure shows the two steps of transfer learning, along with the two ways of
transferring knowledge from source model to the target model. The bottom-left subfigure shows
that transfer learning models are significantly more accurate than the models trained from scratch
even for very small training data sizes, and the bottom-right subfigure shows the extrapolative
power of transfer learning models.

13.2.2 Enabling Deeper Learning on Big Data for Materials Informatics Applica-
tions
Although materials datasets are typically not as big as in some other fields, they can still
contain hundreds of thousands of samples at present, especially simulation-based datasets,
and are regularly increasing in size. Given the demonstrated potential and advantages
of deep learning and the increasing availability of big materials datasets, it is attractive
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to build deeper neural networks in a bid to boost model performance, but it usually
leads to performance degradation due to the vanishing gradient problem. Agrawal and
Choudhary, in collaboration with Wolverton and Foster, have developed a general deep
learning framework based on Individual Residual learning (IRNet) composed of very deep
neural networks that can work with any vector-based materials representation as input to
build accurate property prediction models, and demonstrated how to enable deeper learning
for cases where big materials data is available. IRNet models were recently tested on a
variety of materials datasets based on density functional theory (DFT) simulations, such as
OQMD, AFLOW, Materials Project, and JARVIS, as well as experimental datasets, with
sizes ranging from a few thousand to a few hundred thousand. The models were found to
not only successfully alleviate the vanishing gradient problem and enable deeper learning,
but also build significantly (up to 47%) better predictive models for a variety of materials
properties as compared to as compared to plain deep neural networks and traditional ML
techniques for a given input materials representation in the presence of big data (Figure
13.2). This work was recently published in Scientific Reports.

Figure 13.2: Error performance of IRNet models on multiple datasets of different properties,
sizes, and input representations. The x-axis shows the dataset size on a log scale, and y-axis
shows the percentage change in MAE of IRNet w.r.t. the best traditional ML model (calculated as
(MAEIRNet/MAEBestML - 1) x 100%). IRNet models consistently outperform traditional machine
learning models for bigger datasets by enabling deeper learning.

13.2.3 Data Centric Materials Design via Mixed-Variable Bayesian Optimization
Polymer nanocomposites have the potential to be widely used across multiple industries.
Tailoring nanocomposites to meet application specific requirements remains a challenging
task, owing to the vast, mixed-variable design space that includes composition (i.e., choice
of polymer, nanoparticle, and surface modification) and microstructures (i.e., dispersion
and geometric arrangement of particles) of the nanocomposite material. Modeling proper-
ties of interphase, the region surrounding a nanoparticle, introduces additional complexity
to the design process and requires computationally expensive simulations. As a result,
previous attempts at designing polymer nanocomposites have focused on finding the op-
timal microstructure for only a fixed combination of constituents. Chen has developed
a data-centric mixed-variable Bayesian Optimization framework for design of complex
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material systems with both qualitative and quantitative variables. This has been further ex-
tended as a data centric design framework to concurrently identify optimal composition and
microstructure in design of polymer nanocomposites. With this approach, optimal composi-
tion and microstructure can be identified concurrently. The developed framework integrates
experimental data with state-of-the-art techniques in interphase modeling, microstructure
characterization & reconstructions and machine learning. Latent Variable Gaussian Pro-
cesses (LVGPs) quantifies the lack-of-data uncertainty over the mixed-variable design
space that consists of qualitative and quantitative material design variables. The design
of electrically insulating nanocomposites is cast as a multicriteria optimization problem
with the goal of maximizing dielectric breakdown strength while minimizing dielectric
permittivity and dielectric loss. Within tens of simulations, our method identifies a diverse
set of designs on the Pareto frontier indicating the tradeoff between dielectric properties.
These findings project data centric design, effectively integrating experimental data with
simulations for Bayesian Optimization, as an effective approach for design of engineered
material systems (Figure 13.3). This work has recently been accepted in Engineering.

Figure 13.3: Data centric design framework for polymer nanocomposites.

13.2.4 Data-Driven and Topological Design of Structural Materials for Fracture Re-
sistance

Material macroscopic properties rely heavily on its meso/microscopic structural architec-
tures. Data science provides novel and diverse opportunities for the design of structural
metamaterials attaining exceptional mechanical properties. Chen has demonstrated that
porous structures composed of brittle constitutive materials can be strong and tough through
topological optimization and data-driven techniques. It was shown that brittle fracture
properties can be tailored through the linear control of the homogenized stress and non-
periodic microstructures from a multiscale perspective. Huge size effects of the data-driven
multiscale structures indicate great designability of mechanical fracture resistance across
different scales. These tough advanced structural metamaterials pave the way to multiscale
components with exceptional mechanical fracture properties (Figure 13.4). This work was
recently published in Extreme Mechanics Letters.
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Figure 13.4: Data-driven topological design of structural materials for fracture resistance.

13.2.5 Steel Fatigue Data Mining for Design of Improved Steels
Research work at QuesTek on data mining led by Saboo has been focused on generating
human-interpretable machine learning models for properties of a material. Such inter-
pretable models are useful in the process of design of materials using a systems-based
design approach. By being human-interpretable, the inner workings of models can be
interpreted and provide a certain degree of explainability to material designers. This will
provide higher confidence in the predictions and enable recognition of any model limita-
tions. QuesTek has utilized the rotary bending fatigue strength data on 342 steels (with
varying composition and processing) published by NIMS, Japan. Using prior material
science knowledge, the raw composition and processing data is featurized into quantities
representing microstructural and properties that are known to be affecting the fatigue phe-
nomenon in steels. These quantities include retained austenite content, austenite stability
parameter, hardness and defect (inclusion) distribution. The machine learning technique
used to generate human-interpretable models was symbolic regression using genetic pro-
gramming. Python package gplearn was used to perform the model fitting. The goal of
symbolic regression is to find a relationship between stability of austenite phase (defined
as energy per unit mole) and fatigue strength, as it has been shown that steel with optimum
stability of austenite can help in improving the strain hardening behavior and toughness
which translates to increased resistance to fatigue crack initiation and propagation. Hence,
the experimental data can help elucidate the effect of austenite stability on fatigue while
accounting the effect of other factors, such as hardness, defects. Figure 13.5 shows the
symbolic regression results.

13.2.6 Enhancing Phase Mapping for High-throughput X-ray Diffraction Experi-
ments using Fuzzy Clustering
X-ray diffraction (XRD) is a widely used experimental technique in materials science to
understand the composition-structure-property relationships of materials for designing
and discovering new materials. A key aspect of XRD analysis is that the composition-
phase diagram is composed of not only pure phases but also their mixed phases. Hard
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Figure 13.5: Results from symbolic regression using genetic programming with plots of effect of
ASP on fatigue strength.

clustering approach treats the mixed phases as separate independent clusters from their
constituent pure phases, hence, resulting in incorrect phase diagrams which complicate
the next steps. Agrawal and Choudhary, in collaboration with Mike Bedzyk (NU) and
Chung (NU) have developed a novel clustering approach of XRD patterns by leveraging
a fuzzy clustering technique that can significantly enhance the potential phase mapping
and reduce the manual efforts involved in XRD analysis. The proposed approach first
generates an initial composition-phase diagram and initial pure phase representations by
applying the fuzzy c-means clustering algorithm, followed by hierarchical clustering to
accomplish effortless manual merging of similar initial pure phases to generate the final
composition-phase diagram. The proposed method is evaluated on the XRD samples
from two high-throughput composition-spread experiments of Co-Ni-Ta and Co-Ti-Ta
ternary alloy systems. The results demonstrate significant improvement compared to hard
clustering and significantly reduce manual efforts. Verified by the domain scientists on
the team, the results achieved good agreement with the manually computed ground-truth
phase diagrams for the two ternary alloy systems. This work was accepted and presented
at ICPRAM 2021.

13.2.7 Data-Driven Multi-Scale Modeling and Optimization for Elastic Properties
of Cubic Microstructures
In the structure-property optimization design problem, the objective is to obtain microstruc-
tures that leads to a desired optimal property in an accurate, fast and complete fashion. The
microstructure can be represented by a set of statistical descriptors, such as the orientation
distribution function (ODF). Properties like the stiffness constant C11, Young’s modulus
E11, can be theoretically computed as functions of ODF in the homogenization step, which
is the forward problem. However, the inverse problem of microstructure optimization is
much harder. Existing gradient-based optimization methods can find one optimum single-
crystal solution but usually fail to discover multiple polycrystalline solutions, which is
important for inverse problems. Agrawal and Choudhary, in collaboration with Choud-
hary, Tavazza, and Pinar Acar (Virginia Tech), have developed a machine learning based
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optimization method that reduces the dimensions of the ODF space to perform more guided
search. The application of the method on data for Al, Ni, and Si from the JARVIS-DFT
database revealed that it can discover multiple polycrystalline solutions while maintaining
(near-)optimality. Polycrystalline designs are advantageous over single crystals in terms of
better manufacturability. This work was recently accepted in Integrating Materials and
Manufacturing Innovation (IMMI).

13.2.8 Semi-Parametric Functional Calibration and Uncertainty Quantification
While most calibration methods focus on inferring a set of unknown but assumed to be
constant model parameters, many engineering problems have model parameters that are
functionally related to the model variables. Being able to formulate a low-dimensional
approximation of the calibration functions affords the ability to use low-fidelity models
to reliably explore physical phenomena at length and time scales unattainable with their
high-fidelity simulations/experiments. Chen has developed a semi-parametric uncertainty
quantification-based decision support framework that enables modelers to select and
calibrate an appropriate class of calibration functions. The purpose of this approach is
to identify an appropriate balance between model complexity and calibration accuracy.
The framework starts with a candidate set of high-dimensional calibration functions for
which we quantified the first two statistical moments through an approximate Bayesian
computational sampling scheme. Subsequently, through this analysis a modeler can select
and calibrate a more appropriate and low-dimensional class of calibration functions. The
strength of this framework is that it provides a structured approach to synthesize domain
knowledge from physical experiments, simulation models, and expert insight.

13.2.9 Improving Scalability of Parallel CNN Training by Adaptively Adjusting Pa-
rameter Update Frequency
Training deep learning networks is very computationally expensive, which is typically
done using some variant of stochastic gradient descent (SGD). It is thus highly desirable
to parallelize and accelerate SGD, for which the most common strategy is synchronous
SGD with data parallelism, but it suffers from expensive inter-process communications
of averaging gradients among all workers. The iterative parameter updates of SGD cause
frequent communications and it becomes the performance bottleneck. Liao, Choudhary
and Agrawal have developed a lazy parameter update algorithm that adaptively adjusts
the parameter update frequency to address the expensive communication cost issue. The
developed algorithm accumulates the gradients if the difference of the accumulated gra-
dients and the latest gradients is sufficiently small. The less frequent parameter updates
reduce the per-iteration communication cost while maintaining the model accuracy. Results
demonstrate that the lazy update method remarkably improves the scalability while main-
taining the model accuracy. For ResNet50 training on ImageNet, the developed algorithm
achieves a significantly higher speedup (739.6 on 2048 Cori KNL nodes) as compared to
the vanilla synchronous SGD (276.6) with negligible (<0.2%) loss in accuracy. This work
was recently published in Journal of Parallel and Distributed Computing.
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14.1 Design Goals
The high level goals of the Materials Data Facility are to make it more simple for users to
publish, discover, and use materials data in their research. MDF consists of four modular
services that together help to meet these goals: MDF Publish, MDF Discover, MDF
Connect, and XTract. MDF Publish provides the capabilities of a decentralized dataset
repository, allowing datasets to be published by a user to any Globus endpoint, identified
with a permanent identifier, and screened through curation workflows. MDF Discover
provides a scalable, flexible, access-controlled, cloud-hosted, materials-specific search
index, coupled with software tools to simplify user searches. XTract is a new service that
allows for scalable, distributed, domain-specific metadata extraction from a set of input
files. MDF Connect is the central element that connects MDF Publish, Discover, XTract,
and also external services (Figure 14.1), enabling programmatic access (e.g. via Python or
REST API) or form-driven access to the MDF services.

14.2 Research Accomplishments
In order to meet the challenges of the 21st Century, we need to discover new materials to
speed electrification and revolutionize transportation, identify new medical therapeutics
to halt acute and chronic disease processes, discover new reaction pathways for green
chemistry, and tackle complex problems across scientific domains. New scientific and
technological discoveries will drive economic growth and help provide economies of
abundance while simultaneously caring for and protecting the environment. With the
co-emergence of new AI methods, advances in high performance computing, software, and
infrastructure platforms, and advanced robotics, materials science research will undergo a
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Figure 14.1: Overview of the Materials Data Facility. A user submits data from any of the data
sources shown through a web form or via Python script (using the MDF Connect client). The data
are collected by MDF Connect, enriched through extraction of materials-specific information, and
transformed into shapes compatible with various services via the XTract service. The original data
or extracted metadata are then dispatched, as appropriate, to MDF services and other community
services.

transformation in the next decade as a vastly more productive research enterprise built on
these new capabilities realizes the key goals of the Materials Genome Initiative. Linking
these capabilities into a national materials design and innovation fabric requires, not least,
advanced data infrastructure. The high-level goals of the Materials Data Facility Use
Case are to perform foundational research and create services to 1) simplify materials data
publication, discovery and usage; 2) automate metadata extraction for materials science
and other domains; and 3) apply advanced deep learning techniques to extract structured
information from unstructured scientific literature documents. We next discuss our efforts
towards each goal.

14.2.1 Data Publication and Discovery
The Materials Data Facility (MDF) provides data services and interfaces for data publica-
tion, integration, and discovery, promoting simplified access, reuse, and synthesis. MDF
supports self-service publication and persistent identification of datasets on distributed
storage with heterogeneous data formats and sizes; automated extraction of descriptive
metadata from structured formats and natural language text, and unified programmatic
discovery and access to dataset contents both within MDF and from other repositories and
services. As MDF data volumes increase, we seek to provide researchers unprecedented
machine learning (ML) opportunities. MDF will also serve as an integration hub for
CHiMaD/NIST, MGI projects, and broader materials community efforts.

Figure 14.2: Select MDF data publication metrics

MDF has published and collected >70 TB
of data comprising 603 datasets represent-
ing datasets from 998 unique authors (Fig-
ure 14.2). Over the past 6 months, users
have moved a total of 12 TB of data and
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621,392 files. MDF provides the commu-
nity with a unique capability to publish large datasets, e.g., we have published datasets
as large as 7.1 TB (Figure 14.3) and datasets with millions of files. These datasets are
traditionally too large for publication services and would otherwise be inaccessible to the
community. Further, we provide additional value by indexing the contents of the datasets
at an individual file level. With MDF, each dataset and the accompanying contents are
searchable, made available on high performance storage for easy access, and preserved
for future use. Further, their contents have been indexed with MDF materials-aware data
extractors (see section 14.2.2) to make the dataset contents searchable at the file level.

Figure 14.3: Dataset screening high charge mobility Pi-conjugated peptides to establish design
rules for organic electronic materials. This dataset showcases the MDF capability to publish
exceptionally large datasets; in this case 7.9 TB.

Simple Data Access Interfaces

It is critical that published data be made available to the community in ways that make them
easy to understand, synthesize with other datasets, explore, and use in modeling efforts.
MDF serves as the back end and data repository to support a dramatically simplified
way to access high quality machine learning (ML)-ready datasets1. Figure 14.4 shows a
CHiMaD dataset of molecular solvation energies accessed using Foundry and MDF. To
load a dataset, a researcher simply provides the dataset DOI, and calls the load method
(Figure 14.4a). The load method fetches important metadata about the dataset including
the ML task, the number of entries, dataset splits (e.g. training, test, validation), and keys
split by inputs and targets (Figure 14.4b). With this information, we are able to construct
automated data loaders that allow users with just two more lines of code to cache data
locally using Globus or HTTPS and manipulate them in e.g., a Jupyter notebook (Figure
14.4c). With this approach, access to materials data that may have previously taken months,
now takes only a few minutes.

1This work highlights a new collaboration between the MDF team and the University of Wisconsin (external NSF
funding)
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Figure 14.4: Compiled dataset of molecular solvation and formation energies to enable discovery
of new Li-ion battery electrolytes. The data are made trivially accessible to researchers who can
fetch the results of >600,000 calculations with several lines of code.

ML-Ready Dataset Availability and Impact
The MDF team has published ML-ready datasets for applications including from Zeolite
synthesis (via MIT), computing molecular solvation energy in various solvents (shown
in Figure 14.4 - via UChicago/Argonne/CHiMaD), automating labeling of dendrite from
tomographic data (via Northwestern/CHiMaD), an atom position benchmark (via UW-
Madison and Oak Ridge National Lab), and predicting material band gaps (combining data
from Materials Project, OQMD, experimental literature, and National Renewable Energy
Laboratory). We are working with NIST researchers to collect and publish data from
JARVIS (Choudhary) and impact mitigation use-case group (Forster) in these ML-ready
formats. Further, these new interfaces are proving helpful to educational pursuits, as they
have been included in classes taught at Northwestern and UChicago, and U. Utah and are
planned to be included in further classes at UW-Madison and U. Toronto in 2022. These
materials have also been made available on NanoHub for public access.

14.2.2 Automating Materials-Aware Metadata Extraction
Science data repositories can be valuable troves of research artifacts, but the volume and
variety of data create significant challenges in creating searchable indexes over these data.
Metadata extraction systems can automatically mine rich, searchable metadata from these
collections, but no current system is tuned for the scale, decentralization, and heterogeneity
of these data. As part of this project we have constructed a domain-independent extraction
system called Xtract that is capable of extracting metadata from these collections. In
the following I discuss recent efforts to intelligently apply metadata extractors to files,
construct schedules based on predicted metadata quality, and study whether the metadata
outputs enhance repository navigability and overall research value for real science users.
File type identification (FTI) is a field concerned with mapping files to one or more file
types. In the context of metadata extraction, one can leverage FTI methods to predict the
extractors that will yield metadata from a file. The leading tool used by Apache Tika to
map extractors to files, libmagic, as we show in Figure 14.5, is unable to correctly identify
many types of files in the Carbon Dioxide Information Analysis Center (CDIAC), primarily
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Figure 14.5: Imbalanced (top) and balanced (bottom) confusion matrices and PR curves for random
forests model trained on first 512 bytes of each file.

due to the files not adhering to mimeType or schema convention. To this end, we explored
various multi-output models, and found that a random forests model trained on the first
512 bytes of a file sufficiently identified over 89% of files, as shown in Figure 14.6. We
successfully predict the types of 35% more files than libmagic.

Figure 14.6: Extractors executed over time (left) and cumu-
lative quality files encountered over time.

We created an automatic meta-
data quality analysis tool to sched-
ule metadata extractors for a full-
repository metadata extraction job.
The scheduler takes as input the
FTI probability vector and meta-
data sizes to determine a priority-
order for all possible extractor-
to-file invocations. Specifically,
the goal is to frontload extractions
that produce value in a given con-
text; for instance, one might want rich, semantic metadata when data are to be explored in
a search index, or one might want complete numeric metadata when automatically tuning
scientific instruments. We illustrate in Figure 5 that a scheduler that maximizes metadata
yield per second effectively pushes the extraction from rich, semantic files to the start of
the queue. We have packaged these metadata quality metrics into a public Python package.

To explore the value of metadata on research tasks, we conducted an IRB-approved (Univer-
sity of Chicago) user study in which users navigated metadata to solve research scenarios.
We recruited six users of large national lab science repositories, and engaged them in
two parts: (1) an informational interview in which we learned about the current metadata
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needs of their science repository as well as potential libraries for conducting new metadata
extractors, and (2) a series of interactive exercises where users navigated an interface for
their repository’s automatically extracted metadata. We showed in both spectroscopy and
battery modeling groups that, regardless of the search interface, users correctly completed
28% more simulated research tasks, and performed these tasks significantly faster (>10X,
on average) than via their best alternative approaches. Importantly, we find that 100%
of participants claim that the automatically extracted metadata are not only helpful, but
more helpful than their existing approaches in navigating their science data. The survey
responses to these exercises are shown in Figure 14.7. We also used this opportunity to
collect qualitative feedback about Xtract’s metadata.

Figure 14.7: Xtract metadata user study survey results at multiple levels of question difficulty.

In summary, we have continued to iterate on Xtract - a metadata extraction system for
science. We developed a scheduling module to intelligently apply extractors to files,
constructed a quality toolkit to automatically analyze the quality of metadata outputs,
and have observed users’ collective ability to leverage these metadata to navigate their
repositories.

14.2.3 Natural Language Processing
Data is taking the center stage in materials engineering, yet vast amounts of data remain
and continue to be buried in written papers, inaccessible to humans and machines. In recent
years, significant progress has been made by the computer science community on tech-
niques for automated information extraction from free text. Yet, transformative application
of these techniques to scientific literature remains elusive. After a comprehensive review
of the technical and logistical challenges of applying state-of-the-art NLP techniques to
materials literature[1], we have concluded that transformer-based language models are
best-suited for information extraction in materials science literature. Unlike traditional
task-specific nlp models, transformer-based models can be pretrained unsupervised on a
large corpus, thus greatly reducing the need for labeled data.

A number of transformer-based language models have been developed for various scien-
tific domains, such as biology (BioBERT[2], PubMedBERT[3]) and Computer Science
(SciBERT[4]). However, their applications for information extraction in materials science
remain limited. We propose adapting these state-of-the-art language models by training
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ScholarBERT ScholarBERT-XL
Hidden Layers 24 36

Attention Heads 16 20
Dropout 0.1 0.1

Activation Function GeLU GeLU
Layer Normalization 1e-05 1e-05
Hidden Dimension 1024 1280

Intermediate Dimension 4096 5120

Table 14.1: Model parameters of two sizes of ScholarBERT.

Pre-training Corpus
Model Parameters Datasets Tokens
BERT-Large 340M 15M Wikipedia pages and novel books 3.3B
SciBERT 110M 1.14M CS and Bio papers from Semantic Scholar 3.1B
BioBERT 110M PubMed abstracts, plus BERT corpus 7.8B
PubMedBERT 110M PubMed abstracts and PubMedCentral full texts 16.8B
MatSciBERT 110M 150K MatSci papers from Elsevier Science Direct 285M
ScholarBERT 340M 67M English-language research articles 221B
ScholarBERT-XL 770M 67M English-language research articles 221B

Table 14.2: Comparison of model size and pre-training corpus of scientific language models.

them on a massive corpus consisting of exclusively scientific literature. To this end, we
present ScholarBERT and ScholarBERT-XL, two language models that have been shown
to outperform the current state-of-the-art systems in named entity recognition tasks. Table
14.2.3 listed the hyperparameters of ScholarBERT. Table 14.2.3 compares the size and the
pre-training corpus of six transformer-based language models.
Typically, language models follow a pre-train then fine-tune paradigm, where pre-training
consists of training a model from scratch using a large unlabelled corpus and fine-tuning
tweaks the resulting model’s weights to optimize the downstream task performance on
a domain specific task. There have been efforts towards building language models for
science, but most of them focus on the biomedical sciences. More recently, we have seen
some work that aims at pretraining language models for the materials science domain, such
as MatSciBERT.

We use the Solid State Dataset [5] consisting of 800 hand-labeled materials science ab-
stracts to evaluate the performance of our models on downstream named entity recognition
tasks. The abstracts contain at least one inorganic material and a synthesis or characteri-
zation method for inorganic materials. These abstracts are labeled on an entity-level into
seven different entity types including inorganic materials (MAT), symmetry/phase labels
(SPL), sample descriptors (DSC), material properties (PRO), material applications (APL),
synthesis methods (SMT), and characterization methods (CMT). We compare the results
of our fine-tuned models to existing models in the literature including MatSciBERT and
SciBERT. Both SciBERT and MatSciBERT have 110M parameters and are trained on
specific domains. On the other hand, ScholarBERT and ScholarBERT-XL have 340M and
770M parameters respectively and are trained on a diverse scientific corpus.
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Figure 14.8: F1 scores of ScholarBERT and
MatSciBERT on the Solid State Dataset. Schol-
arBERT has an advantage in recognizing mate-
rial applications, sample descriptors, and symme-
try/phase labels. Overall it achieved an F1 score
of 83.3%, while MatSciBERT got 82.9%

Understanding scientific concepts and their
associated domains is crucial to identify rel-
evant texts in a noisy corpus, which most
other models simply assume is done in
a separate preprocessing step by a differ-
ent model or classifier. Figure 14.9 shows
the results of projecting word vectors of
entities in material science (red) and an-
other discipline (blue, e.g., chemistry) onto
the discipline difference word vector (e.g.,
chemistry - material science). The word
vectors are extracted from ScholarBERT
and five other transformer-based scientific
language models. Figure 14.9 shows that
ScholarBERT is able to correctly associate
entities with their domains and cleanly sep-
arate entities from different domains, while
the other models cannot.

In summary, we have developed ScholarBERT, the largest scientific language model to
the best of our knowledge. Due to its vast training corpus and large number of hidden
parameters, it is able to outperform the other scientific language models on recognizing
and classifying materials science entities. Further analysis of its hidden representations of
the entities revealed its superior ability to differentiate scientific concepts.
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Figure 14.9: Visualization of projection of materials science vs other entities. Materials Science
(MatSci) entities (blue) are expected to be in the negative (left) after projection, and entities in the
other domain (red) are expected to be in the positive after projection (right). Of all the language
models tested, only the vectors extracted from ScholarBERT performed as expected, demonstrating
its superior encoding of entities.

14.3 Community Support and Other Collaborations
Phase Field Hub (PFHub) - MDF Integration
Daniel Wheeler (NIST), Trevor Keller (NIST), Olle Heinonen (CHiMaD, Argonne) Ben
Galewsky (UIUC), Jonathon Gaff (CHiMaD, UC), Ian Foster (CHiMaD, UC/Argonne),
Ben Blaiszik (CHiMaD, UC/Argonne)

The MDF team is working with the PFHub team at NIST to leverage MDF capabilities to
enable simplified benchmark challenge submission, long-term storage of results on high
performance storage, and association of DOIs with each submission to enable citation. A
prototype has been developed to index prior submissions from PFHub.

Polymer Property Database (PPPDB)
Debbie Audus (NIST), Roselyne Tchoua (CHiMaD, UC), Zhi Hong (CHiMaD, UC), Ian
Foster (CHiMaD, UC/Argonne), Ben Blaiszik (CHiMaD, UC/Argonne)



130 Chapter 14. Materials Data Facility

The MDF team has worked with NIST to generate PPPDB. In 2022, we will integrate the
PPPDB back end with MDF to simplify data access and enable deposit from users outside
the direct PPPDB team.

AI Driven Automated Laboratories
Ben Blaiszik (CHiMaD, UC/Argonne), Ian Foster (CHiMaD, UC/Argonne), Logan Ward
(CHiMaD, Argonne), Marcus Schwarting (CHiMaD, Argonne), Juan de Pablo (CHiMaD,
UC/Argonne), Heinrich Jaeger (CHiMaD, UC)

MDF has been working to explore concepts in laboratory automation to understand the data
infrastructure necessary to support wider and more rapid adoption of AI-driven automated
laboratories and to deploy a prototype of such an automated experimental system coupled
with machine learning and data infrastructure components towards problems in polymer
science. This work lead to a newly funded DOE project with the PIs listed above. In 2022,
we connect these efforts to those at NIST (e.g., Brian DeCost) to exchange information on
laboratory automation capabilities.

3M - CHiMaD Collaboration
Christina Thomas (3M), Marcus Schwarting (CHiMaD, Argonne), Ben Blaiszik (CHiMaD,
UC/Argonne), Logan Ward (CHiMaD, UC/Argonne), Ian Foster (CHiMaD, UC/Argonne),
Juan de Pablo (CHiMaD, UC/Argonne), Matthew Tirrell (CHiMaD, UC/Argonne)

The MDF team, along with others at Chicago have worked to engage industrial contacts at
3M on problems of polymer discovery and process optimization. MDF team has visited
3M, and 3M representatives have visited Chicago. MDF is in discussion with 3M to
leverage MDF capabilities and to support data sharing and publication for data generated
via their academic collaborators.

Joint Center for Energy Storage Research (JCESR) - MDF
Logan Ward (CHiMaD, Argonne), Larry Curtiss (Argonne), Badri Narayanan (University
of Louisville), Rajeev Assary (Argonne), Ben Blaiszik (CHiMaD, UC/Argonne), Ian Foster
(CHiMaD, UC/Argonne)
The MDF team has worked with JCESR for several years to enable data publication from
select projects, and to build predictive machine learning models on the available datasets.
For example, we published the largest database of G4MP2 accuracy molecular calculations
and molecular solvation energies. Based on this work, a newly funded project was initiated,
leading to the hiring of Logan Ward (CHiMaD postdoc) as a full Argonne scientist.

Development of a Foam Property Database
Aaron Forster (NIST), Ben Blaiszik (CHiMaD, UC/Argonne), Ian Foster (CHiMaD,
UC/Argonne)

Leverage MDF data infrastructure to create a public community resource of experimental
foam properties for applications in impact mitigation.
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Development of Shared Metadata Extractors
Josh Taillon (NIST), Ben Blaiszik (CHiMaD, UC/Argonne), Ian Foster (CHiMaD, UC/Argonne)

We are working together to develop joint materials-specific metadata extraction capabilities
for use in NIST LIMS systems. This work will leverage prior MDF work in the MaterialsIO
software package.





15. CHiMaD Outreach: Training and Professional Development

Begum Gulsoy (NU), Laura Bartolo (NU), Greg Olson (NU), Peter Voorhees (NU), Juan
de Pablo (UC), Paul Nealey (UC), Olle Heinonen (ANL), Marius Stan (ANL), Noah Paul-
son (ANL), Ian Foster (UC), Ben Blaiszik (UC), Carrie Wilson (ASM), Aziz Asphahani
(QT), Jason Sebastian (QT)

James Warren (NIST), Carelyn Campbell (NIST), Chandler Becker (NIST), Debra Audus
(NIST), Zachary Trautt (NIST), Jon Guyer (NIST), Daniel Wheeler (NIST)

15.1 Goals

CHiMaD has designed an extensive program with outreach and training to high school
students, K-12 STEM educators, undergraduate students, graduate students, postdoctoral
researchers, researchers and industry and government professionals. Gulsoy oversees the
entire outreach program and Bartolo leads the data-specific outreach efforts. However,
wide breadth of CHiMaD outreach is possible through the participation of many other
CHiMaD and NIST PIs, postdocs and students as well as other collaborators - lead
organizers for events are indicated in more detail with each event and initiative listed below.

The restrictions due to the COVID-19 pandemic has certainly disrupted CHiMaD outreach
events but also brought forth new opportunities to convene the community and increase
the impact of CHiMaD’s activities. The next section describes what CHiMaD team was
able to accomplish and develop in 2021 under its Outreach program.

15.2 Accomplishments: Outreach and Training

15.2.1 CHiMaD Materials Design Training
Begum Gulsoy (NU), Clay Houser (NU), Jonathan Emery (NU), Aaron Geller (NU), Greg
Olson (NU)

Designing novel materials of specific properties for a particular application requires
simultaneously utilizing physical theory, advanced computational methods and models,
materials properties databases and complex calculations. This approach stands in contrast
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to the traditional trial-and-error method of materials discovery. CHiMaD focuses this
approach on the creation of novel hierarchical materials which exploit distinct structural
details at various scales, from the atomic on up, to obtain enhanced properties. The center’s
research focuses on both organic and inorganic advanced materials in fields as diverse as
self-assembled biomaterials, smart materials for self-assembled circuit designs, advanced
ceramics and metal alloys.

The CHiMaD Materials Design Training aims to introduce and further the attendees’
knowledge of the Materials by Design philosophy and related practical design concepts.
The CHiMaD design training is commonly held in two parts: (1) a core training session
to introduce the participants to the concept and workings of materials design; and (2) a
specialized small-group session to guide participants as the participants apply what they
have learned to materials systems of their own choice using the technical knowledge
represented in the small group. During the latter, small, diverse groups with varying
types of expertise are lead through discussions on building System Design Charts. This
exercise allows for the organization and visualization of the processing-structure-property-
performance links of a material system while identifying unique design goals and strategies
while identifying unique design goals and strategies. The hands-on approach allows to
showcase the strength of accommodating different types and even levels of expertise for
design.

CHiMaD design team lead training sessions for CHiMaD researchers and worked on
further developing the training tools for industry use during the year. In 2021, a virtual
CHiMaD Materials Design Training was held for CHiMaD researchers, mainly focusing
on Design of Polyelectrolyte Complexes and Directed Self Assembly of Soft Materials
use-case groups, on November 1, 2021 with the lead of Gulsoy, Jonathan Emery (NU)
and Clay Houser (NU). This followed the training organized in 2020 focusing on 2D
Electronic Materials Inks, Thermoelectric Design and Composite Design use-cases for
content development. The latest training also served as a test-bed for the newly developed
CHiMaD System Design Toolbox, generating first-time user-feedback towards further
development.

Since 2018, CHiMaD has been customizing its CHiMaD Materials Design Training for
professionals with the aim to introduce and integrate the materials design methodology
into the materials development cycle.

A major effect of the ongoing pandemic in 2020 was the move to fully virtual events. A
positive development from the year has been the opportunity to rethink what it means to
run a hands-on session in a fully virtual format without losing the engagement or interest of
participants due to the medium. The CHiMaD Materials Design training historically prides
itself on providing an engaging discussion on materials systems of interest to clients with
active participation of small groups of researchers. In-person this may mean researchers
discussing around a table, or over a white board, physically moving post-its around together
to build a system chart. While Power Point presentations had been incorporated into earlier
trainings, this approach was dropped due to being disengaging.

In 2021, CHiMaD design team their invested time and efforts in further developing web-
based tools which can be used to engage individuals in the training while crowd-sourcing
technical knowledge to determine the discrepancies in the understanding and definition of
the materials systems being discussed. The idea behind the expansion is to be able to take
this tool from being CHiMaD-training specific to a community-tool which can be utilized
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Figure 15.1: Homepage for The CHiMaD System Design Toolbox

by people all levels of knowledge in different ways and settings, be it in a classroom or
industry training. To do this, Gulsoy, Jonathan Emery (NU), and Clay Houser (NU) have
partnered with Aaron Geller, a Research Assistant Professor at Northwestern’s Center for
Interdisciplinary Exploration and Research in Astrophysics (CIERA), who specializes in
visualizations. Together, in 2020, the design team had built the first-version of several
web-based tools: (1) A method to self-categorize a "training" materials summary; (2) A
tool to identify the links of the system design chart of the "training" materials system;
(3) A method to simultaneously visualize the crowd-sourced answers and compare them.
These tools were unveiled in industry and internal trainings in 2020. Using participant
feedback and lessons learned during the training, the team further developed these tools
in 2021 and migrated them to Northwestern’s servers for better security and maintenance.
They have expanded the tools capabilities to three modules:

• Collaboration Module: Think and Train Together
This module is intended to be a training or discussion tool for groups where the
group would discuss a Materials Summary paragraph, picking either from a CHiMaD
developed one or uploading their own. The tools allows for poling the trainees
on their categorization of pre-determined key words, leading discussions on the
outcomes of the training polls, converting the keywords and the results of the training
into a visual System Design Chart and finally polling the trainees again on what are
the appropriate links between different boxes of the system design chart.

• Individual Module: Think and Train Together
This module is intended for one person, or a small group, to create a system design
chart on their own. It provides greater flexibility than the collaboration module.

• Customization Module
This module provides a lot of flexibility in further formatting the system design
chart produced. Users are able to add/delete boxes and the text in them, change the
direction of processing arrows, and add bullet points to name a few. It also allows
uses to export in three different formats (.svg, .png, .ppt) depending on the intended
use.

The CHiMaD System Design Toolbox, shown in Figure 15.1, can be accessed at http://

http://chimad-trainings.rcs.northwestern.edu
http://chimad-trainings.rcs.northwestern.edu
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chimad-trainings.rcs.northwestern.edu. Documentation such as "Getting Started"
has been added to the toolbox website, and further user-guidance documentation is being
produced. The new version of the toolbox is currently under pilot testing at NU’s Materials
Design (MSE 390) course lead by Shull. A manuscript is also in preparation.

15.2.2 CHiMaD Focus Workshop

Uncertainty Quantification of Phase Equilibria and Thermodynamics
Noah Paulson (ANL), Carelyn Campbell (NIST), Begum Gulsoy (NU)

The CHiMaD Uncertainty Quantification of Phase Equilibria and Thermodynamics (UQPET)
Focus Workshop, was held virtually on October 27 & 29, 2021. In recent years, uncertainty
quantification techniques have gained special attention in thermodynamics and phase
equilibria. This increase in interest in uncertainty quantification has been mirrored in
many scientific and engineering disciplines. This second workshop in the series, explored
the impact of uncertainty quantification in atomistics, thermodynamic phase diagrams,
experiments and computations, artificial intelligence, and design strategy. Identifying links
between these disparate areas, has potential to transform materials and process design. The
workshop will be conducted virtually over two days, with research talks, an industry panel,
and open discussions.
The 48 workshop participants achieved this goal through a mix of presentations and panel
discussions held over two days. Presentations included:

• The Value of Label Uncertainty in Training Data
Maxwell Hutchinson (Citrine Informatics)

• The Role of Optimization in Uncertainty Quantification: Instrument Artifacts and
Physical Principles
Paul Patrone (NIST)

• Bayesian Hierarchical Random Effects Framework for UQ Applied to CALPHAD
Databases
Steve Niezgoda (The Ohio State University)

• Virtual oxides as a test bed for DFT methods and codes
Stefaan Cottenier (Ghent University)

• Uncertainty in Multiscale Materials Modeling and Design
David McDowell (Georgia Institute of Technology)

• Industry Panel
David Furrer (Pratt & Whitney), Changing Niu (QuesTek), Edward Glaessgen (NASA
Langley), Louis Hector (General Motors R&D)

15.2.3 CHiMaD Focus Workshop

CHiMaD Phase Field Methods Workshop Series
Olle Heinonen (ANL), Peter Voorhees (NU), James Warren (NIST), Jonathan Guyer
(NIST), Daniel Wheeler (NIST), Trevor Keller (NIST), Begum Gulsoy (NU)

The goal of the CHiMaD Phase Field Methods Workshop series is to develop benchmark
problems for the global phase field community and to engage this elite team of invited Phase
Field experts and framework developers for in providing input during this development.

http://chimad-trainings.rcs.northwestern.edu
http://chimad-trainings.rcs.northwestern.edu
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In response to the ongoing pandemic, the CHiMaD Phase Field Methods Workshop was
converted to a virtual format in 2020 and remained in this format during 2021. The 11th
CHiMaD Phase Field Methods Workshop in the series took place as two-hour long sessions
on April 26-27 and May 3-4, 2021. The workshop had the most international attendance
and presentations to date as well as the first industry presentation. The 87 registrants held
in-depth discussions speared by 7 invited presentations:

• Britta Nestler, Karlsruhe Institute of Technology (Germany)
Multi-Phase Solidification

• Mike Tonks, University of Florida
Concurrently Modeling Multiple Length Scales by Coupling the Phase-Field Method
tp Spatially-resolved Cluster Dynamics

• Abhik Choudhury, Indian Institute of Science - Banglore (India)
Influence of Solid-Solid Anisotropy and Solute Diffusivity Contrast on Three-phase
Growth Patterns in Ternary Eutectics

• Nick Provatas, McGill University (Canada)
Modeling Rapid Solidification Kinetics Quantitatively Using Phase-Field Models

• Ivan Yashchuk, Aalto University (Finland)
Experiences of Using Firedrake/FEniCS for Development of Phase-Field Solvers

• Alex Guo, COMSOL (Industry Presentation)
Phase Field Modeling with COMSOL Multiphysics

• Steve DeWitt, Oak Ridge National Laboratory
reparing for Exascale Phase-Field Modeling: Phase-Field Code Development in
ExaAM

The 11th workshop also included the first virtual poster presentation by students and
postdocs with a Poster Session organized over Gather.Town with the participation of 4
posters, Figure 15.2.
The 12th CHiMaD Phase Field Methods Workshop was originally planned as an in-person
meeting however was ultimately converted to a virtual meeting due to the continuing
pandemic. The 12th workshop took place virtually on November 2-4, 2021, in a similar
format to the in-person meetings but with longer breaks to avoid zoom-fatigue. The 73
registrants held in-depth discussions speared by 4 invited presentations:

• Olle Heinonen (ANL) & Daniel Wheeler (NIST)
Current Benchmark Problems, Traffic to PFhub

• Michael Tonks (University of Florida)
Phase Field Best Practices, presentation and discussion

• Fadi Abdeljawad (Clemson University)
Grain Boundary Segregation and Microstructural Evolution

• Ellad Tadmor (University of Minnesota)
Atomistically-Informed Multiscale Modeling

There was also a session dedicated to short presentations from students and postdocs,
with the aim to highlight their work and contributions to the field, as well as enable any
workforce transfer. The Phase Field tool group has had a high-success rate of retaining
students and postdocs in the field and in the CHiMaD Phase Field community. Many
former postdocs continue to be part of the workshop series as professionals. The short
presentations were as follows:
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Figure 15.2: 11th CHiMaD Phase Field Workshop, organized in Spring of 2021.

• Jin Zhang (Northwestern) - Phase Field Modeling of Li Dendrite
• William Beck Andrews (U of Freiburg) - Crack Paths in Elastically Heterogeneous

Materials via Phase Field Fracture
• Dharma Raj Basula (U of Connecticut) - Modeling Thermoelectric Phenomena In

Simple and Complex Material with FEM
• Adrian Boccardo (NUI Galway) - Resolution of Phase-Field Models By Means of

FFT and GPU
• Whitney Tso (Northwestern U) - Machine Learning Aided Exploration Of Phase-field

Sensitivity Analysis
• Jose Mancias (Texas A&M) - A Julia GPU Parallelized Implementation of the

Nucleation Benchmark

Further details are presented in CHiMaD Phase Field Methods tool group section of this
report, on Chapter 11.
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15.2.4 CHiMaD Professional Development Workshops
Begum Gulsoy (NU)

A new addition to the CHiMaD outreach programs is the Professional Development
Workshops aimed at building soft-skills of postdoctoral and early-career researchers. This
series was kicked off in Fall 2021 with a workshop by Kellogg School of Management
Professor, Loran Nordgren on personal branding and overcoming resistance for new ideas.
Prof. Nordgren presented on his research, summarized in his latest book The Human
Element; all registered attendees also received a copy this book in preparation for the
workshop.

In the follow-up survey, feedback was also collected on what other topics are of interest to
the attendees. Some areas identified were (1) Strategies for effective speaking or writing,
(2) Data presentation and powerpoint construction.

October 26, 2021 (Registered: 43, Attendees: 15)
Leadership Presence: Building your personal brand
Loran Nordgren (Kellogg School of Management, Northwestern)

Abstract People begin to form impressions of your character from the moment you
meet. In fact, within milliseconds of a first encounter, people have already formed snap
judgments about whether you are leadership material. This session examines how these
largely unconscious judgments are made. We then use these insights to define and craft
your leadership brand.

Bio Loran Nordgren is a scientist, lecturer, and consultant on the topics of leadership,
influence and behavior change. Loran’s research examines how the unconscious mind
guides our thoughts and actions. He uses theory-driven insights to create interventions and
policy recommendations that improve decision-making and well-being. His research has
been published in leading journals such as Science and is regularly discussed in prominent
forums such as the Harvard Business Review. In recognition of his work, Professor
Nordgren has received the Theoretical Innovation Award in experimental psychology. A
former Fulbright Scholar, Professor Nordgren has received numerous teaching awards
for excellence in the classroom including Kellogg’s Management and Organization’s
Teacher of the Year. He is one of Poets & Quants’ 40 under 40 business school professors.
He is the author of the recent bestselling book The Human Element (https://www.
humanelementbook.com).

15.2.5 SRG Annual Meeting
Greg Olson (NU), Begum Gulsoy (NU)

The 37th SRG Annual Meeting was first postponed then virtually held (via Webex) on
October 5, 2021 with 108 registered attendees. This year’s meeting was meant to be held
conjunction with the CHiMaD Annual Meeting, however the CHiMaD Annual Meeting
was postponed to January 2022 and the SRG meeting was ultimately moved to a virtual
format. The meeting agenda was again modified to be a single-day event, with a reduced
number of 11 presentations. The presentations were as follows:

• QuesTek IDE - C. Niu (QT)
• Fracture Simulation - M. Parks (MIT)

https://www.humanelementbook.com
https://www.humanelementbook.com
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• The Grain Boundary Genome - C. Schuh (MIT)
• The Liquid Genome - A. Allanore (MIT)
• LEAP Microanalysis - D. Seidman (NU)
• High Throughput Design - W. Xiong (University of Pittsburgh)
• Naval Martensitic Steels - C. Houser (NU/MIT)
• Printable Tool Steels - F. Hengsbach (Paderborn University, Germany)
• Cobalt Superalloys - C. Liu (NU)
• ULTIMATE - D. Frankel (QT)
• QuesTek Japan - J. Sebastian (QT)
• QuesTek Digital - J. Gong (QT)

15.2.6 CHiMaD Annual Meeting
Peter Voorhees (NU), Juan de Pablo (UC), Greg Olson (NU), Begum Gulsoy (NU)

The 2021 CHiMaD Annual Meeting, originally scheduled to take place in October (in-
person) was postponed to January 2022 with the aim to keep it in-person however ultimately
it was held virtually as a two-day event on 24-25 January 2022 with the registration and
participation of 250+ attendees.

15.2.7 Materials Genome Toolkit Program
Greg Olson (NU), Paul Mason (ThermoCalc), Begum Gulsoy (NU), Carrie Wilson (ASM),
Jeane Deathrage (ASM)

The ongoing program addresses several CHiMaD objectives by helping the next generation
of scientists and engineers become proficient with materials-by-design tools and techniques
and by contributing to efforts that are advancing the collective knowledge on material
systems and methodologies. This program was established in 2015 and, to date, 24 U.S.
universities were awarded the Materials Genome Toolkit. The following university was the
recipients of the 2021 Materials Genome Toolkit Award:

• University of Alabama, Tuscaloosca
Department of Mechanical Engineering PI: Kasra Momeni

Materials Genome Toolkit Renewal Program To ensure and motivate the continued imple-
mentation of MGI tools in U.S. undergraduate engineering curricula, a license renewal
program was created in 2018 in partnership with ThermoCalc and the ASM Materials
Education Foundation. Each license is provided at a highly discounted rate through the
long-standing educational partnership with ThermoCalc. In 2021, the Foundation, lead
by Wilson, worked with three universities to renew their licenses (for the first time) for
3-years at 50% cost to the universities; and worked with another three universities (for the
second time) for 3-years at 50% cost to the universities. The program leverages CHiMaD
funds by matching them to the university funds.

15.2.8 Undergraduate Education in Materials Design
Greg Olson (MIT), Kenneth Shull (NU)

The undergraduate-level Materials Design courses at NU, lead by Shull, and at MIT, lead
by Olson aim to build teams of students focusing on real materials design problems, lead
by graduate students and/or postdoctoral researchers. With the move of Olson to MIT, the
materials design core class at NU is lead by Shull focusing mostly on non-hard materials.
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Due to the ongoing pandemic, the classes were once again offered virtually in 2021. The
projects in both classes remain CHiMaD-partnered or CHiMaD-inspired.

CHiMaD/SRG projects are the primary source of student projects in Olson’s Materials
Design class with supported researchers serving as coaches to the team projects. The
revised class in Computational Materials Design at MIT, conducted in 2021 in virtual
mode, continued to draw from CHiMaD research for these team projects. In addition
to the Printable Co Superalloy project coached by Dr. Liu, further application of the
ONR-supported transformation toughening research addressed martensitic naval hull
steels toughened by dispersed austenite. Building on our strong relation with Apple as
enhanced by Dr Jim Yurko joining the CHiMaD TAB, Apple served as client to a project
on controlled-melting-point lead-free solders alloys. A project on printable steels in
collaboration with U Paderborn in Germany addressed high-strength tool steels. A project
on high-strength aluminum alloys drew on the new DSO-Singapore program. Staffing
of the coaching and team participation was enhanced by virtual Visiting Scholars from
Germany, Greece, and Singapore. Figure 15.3 shows the projects completed in the Olson’s
design course at MIT.

Figure 15.3: Design class projects conducted at MIT.

University of Chicago Collegiate Scholars Program Summer School

Molecular Engineering Course
Juan de Pablo (UC), Paul Nealey (UC), Xiaoying Liu (UC), Begum Gulsoy (NU)

In continued successful partnership with the University of Chicago Collegiate Scholars
Program that aims to prepare Chicago Public Schools students in grades 10-12 for admis-
sion and success at colleges and universities, CHiMaD PIs lead the Program’s Molecular
Engineering course offered during the summer quarter. The 6-week engineering course is
designed to illustrate the concepts and principles of polymeric, composite, and nanoscale
materials and demonstrate the relationship between molecular structures and material
properties in the context of real-world applications, with an emphasis on materials de-
sign. Students learn the fundamentals of materials science and molecular engineering,
including material types and properties, design of materials and experiments, and material
characterization and analysis, through lectures, hands-on experience, reading assignments,
and technical communication practice. Techniques for measuring material properties and
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monitoring experimental processes are integrated throughout the course by use of a variety
of laboratory instruments and tools. The students have shown great interest and enthusiasm
in participating in the lab experiments and discussions. They have learned the key elements
of a comprehensive material design process and important material systems, including
polymers, composite materials, nanomaterials and semiconductors, in a stimulating and
constructive environment.

In 2021, the summer session was held virtually and the course content was modified to
accommodate the change. Multiple modules were taught by Nealey, de Pablo, Xiaoying
Liu (UC) and Gulsoy. The 6-week Engineering Core Course took place between July
2020, as two 1.5-hour sessions each week. The module presented by Gulsoy focused on
getting high-school students to think about materials they already interact with in their
lives as well as why and where materials design comes into play. A common example used
to explain the concept was use of materials in bicycles. Further, drawing inspiration from
the system design chart of ice-cream, Gulsoy lead the students in pound cake-design.

Figure 15.4: (Left) Flyer for the virtual 2021CHiMaD-ASM Materials Genome Camp for K-12
STEM Educators. (Right) Photos representative of Materials Selection, Cake Design and Composite
Design Modules.

15.2.9 CHiMaD-ASM Materials Genome Camp for K-12 STEM Educators
Begum Gulsoy (NU), Jonathan Emery (NU), Clay Houser (NU), Manuel Esparragoza
(QT/ASM Chicago Chapter), Jacqueline Hardin (QT/ASM Chicago Chapter), Greg Olson
(NU), Aziz Asphahani (QT), Carrie Wilson (ASM), Jeane Deatherage (ASM)

To achieve a higher-impact outreach to high school students as well as underrepresented
minorities, CHiMaD has partnered with ASM Materials Education Foundation in 2017 to
host the annual CHiMaD-ASM Materials Genome Camp for K-12 STEM Educators, which
runs under the umbrella of ASM’s Teacher Camps. The camp also provides further work-
force education, with undergraduates from the Materials Design course at Northwestern
acting as teaching assistants for the duration for the camp.
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The summer 2021 Camp was developed as a fully-virtual camp. Towards this, not only the
content was modified to be home and remote friendly, but also a supply kit was introduced
to the camp and sent to the teacher’s preferred addresses. The camp flyer and photos from
the content taught are shown in Figure is shown in Figure 15.4. Three main modules taught
during the 2021camp include:

1. Materials Selection, drawing inspiration from industry use-cases such as SpaceX’s
Star ship as well as familiar objects such as musical instruments.

2. Cake Design, following in the spirit of the most popular system design chart, ice-
cream, a new module was developed to not only explain system design charts but
also introduce concepts of materials data, databases, and data management. Teachers
not only got to do the experiments but were able to contribute measurements from
their cakes to a class-wide database, which was then used for design discussions.
Moreover, the module was supported by a guest presentation by Manuel Esparragoza
(QT) on Critical Materials. This concept was strengthened by an analogy to designing
gluten-free cakes.

3. Composite Design, this is an already-established and popular module, which was
modified to be home-friendly/safe. This year, to demonstrate computational materials
design, Finite Element Analysis using COMSOL was introduced the design process.

The 2021 Camp concluded with a poster session, where 12 teachers presented posters on
class modules that can be inserted into their classrooms using ideas from the camp. Given
the range of topics taught and the resources available, this was decided to be the most
realistic outcome of the Camp in being able to translate content into real classrooms across
U.S. To encourage the actual implementation of the ideas on the teachers’ posters, CHiMaD
partnered with ASM Chicago Chapter for poster awards. This partnership was spearheaded
by Manuel Esperragoza (QT, ASM Chicago Chapter Treasurer) and Jacqueline Hardin
(QT, ASM Chicago Chapter Educational Outreach Chair). With a $10,000 support from
the ASM Chicago Chapter, each presenting teacher won $200 towards the implementation
of their ideas. In addition, four grand prizes of $800 (or a 3D printer) were awarded to
posters which best implemented Materials Design into their proposed modules. As a result,
CHiMaD and ASM were able to create an impact for 1000+ students across the country,
Figure 15.5

Figure 15.5: List of posters presented and name of presenters.

One example of the CHiMaD composites module in a real classroom is shown in Figure
15.7. Rachelle Rasco of Carroll County High School in Hinsville, VA, whose students
are majorly low-income or URM, integrated the CHiMaD composites module to her 2021
class. In another example, Sara Chen and Eleonor Nulud of Anne Arundel Country Public
School in Edgewater, MD were able to build concepts sustainability and materials life
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Figure 15.6: Following feedback survey showed a satisfactory outcome of improving the teachers’
knowledge and understanding of materials design concepts.

cycles into their sustainable classroom project and competition. Gulsoy and Jonathan
Emery (NU) were invited to their class presentations as judges.

Figure 15.7: (Left) Students from Carroll County High School working on designing and strength-
ening their concrete blocks. (Right) Students drop-testing the composite blocks.

15.3 Accomplishments: Data Outreach
In 2021 CHiMaD was invited to participate in numerous data meetings led by NSF and
RDA. It also led the organization of the Materials Research Data Alliance (MaRDA) 2021
Annual Meeting. In Fall 2021 CHiMaD began joint work based on NIST’s opensource
automated workflow of experimental data capture and storage, Nexus/LIMS. The joint
work involves NIST, CHiMaD, NUANCE, Euclid Labs (Bolinbrook, IL) and NU ORIT
and is currently active. CHiMaD data efforts were largely divided into two main areas:
1) Events to which CHiMaD was invited to participate and 2) Events that CHiMaD led:
CHiMaD/NIST Office of Data Informatics Monthly Seminar Series.

15.3.1 Data-focused Events to which CHiMaD was invited to participate
• January 13-15, 2021 [Invited attendance]

NITRD: Big Data Interagency Working Group Workshop
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• February 21-23, 2021 [CHiMaD Lead Organizer]
MaRDA 2021 Annual Meeting

• April 20-22, 2021 [RDA attendee]
P18 Annual Meeting & Co-Organizer, Mat’ls Data Apr 21, 2021

• June 28, 2021 [Invited Advisory Board Member]
OpenKIM NSF Review

• August 2021 - present;
Began monthly meetings on automated workflow for experimental data capture &
storage:
Participants: NIST, NUANCE, Euclid Labs (Bolinbrook, IL) & ORIT

• September 2021; [Invited to be Advisory Board Member]
Materials Open Research, Francis & Taylor

15.3.2 CHiMaD/NIST Office of Data Informatics Monthly Seminar Series
In Fall 2021 CHiMaD and NIST Office of Data Informatics sponsored a monthly seminar
series which has continued into 2022. Organized by Laura Bartolo (CHiMaD) and
Chandler Becker (NIST), the intent of the seminars was to raise the visibility of database
efforts within CHiMaD and NIST and to highlight their efforts to integrate FAIR Data
Principles into their databases as encouraged by federal funding agencies. CHiMaD PIs,
Postdoctoral researchers, graduate students, industrial partners and NIST collaborators
were invited. Seminar surveys indicated that in general more than half the registrants
were not familiar with the databases before the presentations and more than 80% were
interested in data management best practices. Listed below by date are the 2021 seminar
titles, presenters and brief abstracts.

October 12, 2021 (Attendees: 50)
Implementation of FAIR Data Principles in the OQMD
Abhijith Gopakumar, (Wolverton Research Group, CHiMaD/Northwestern University)

The Open Quantum Materials Database (OQMD) is an open source database containing
computationally generated thermodynamic, structural, and electronic structure data of more
than 800,000 materials. This talk will describe the recent implementations of FAIR data
principles in OQMD, including the support for OPTIMADE RESTful API data transfer,
persistent identifiers for materials via Handles, and the availability of structured data for
web search engines to better index the material data.

November 9, 2021 (Attendees: 50)
The NIST-JARVIS Infrastructure for Materials Design
Kamal Choudhary; Francesca Tavazza (NIST)

The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an inte-
grated infrastructure to accelerate materials discovery and design using density functional
theory (DFT), classical force-fields (FF), and machine learning (ML) techniques. This talk
will cover recent updates from the JARVIS platform such as: 1) Atomistic Line Graph
Neural Network (ALIGNN) models for solids and molecules, 2) AtomVision models for
2D STM/STEM images, 3) QCMat for quantum computation algorithms for solids, 4)
OPTIMADE for data-sharing and 5) UQ ML for uncertainty quantifications.
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December 14, 2021 (Attendees: 60)
A FAIR Approach towards Fully Realizing the Impact of AI and Machine Learning
Materials Science
Ben Blaiszik (University of Chicago)

This talk presents latest results and shows demonstrations of developments from two key
projects, 1) The NIST-CHiMaD supported Materials Data Facility (MDF) highlighting
advanced publication, discovery, and automation software and services; and 2) Foundry,
Python software built on the Materials Data Facility to collect, describe, and serve ML-
ready materials science and chemistry datasets, and link these with predictive models.
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16. Products

16.1 Publications

CHiMaD principle investigators and researchers have presented their CHiMaD-funded
work in 103 peer-reviewed journal publications, advanced access articles, proceedings as
well as arXiV pre-print articles in 2021. Among these, 12 publications are co-authored by
NIST and CHiMaD. In this list we also report 10 which have been published in 2021 as
advanced access. In the list below, CHiMaD Principle Investigators are bolded in black,
and NIST Investigators are bolded in blue.

1. Marras, AE; Ting, JM; Stevens, KC; Tirrell, MV (2021) Advances in the Structural
Design of Polyelectrolyte Complex Micelles JOURNAL OF PHYSICAL CHEM-
ISTRY B, Vol 125, Is 26, pp.7076-7089, DOI: https://doi.org/10.1021/acs.
jpcb.1c01258

2. Nguyen, TD; Jimenez-Angeles, F; de la Cruz, MO (2021) Probing the size-dependent
polarizability of mesoscopic ionic clusters and their induced-dipole interactions
JOURNAL OF CHEMICAL PHYSICS, Vol 155, Is 19, Ar 194901, DOI: https:
//doi.org/10.1063/5.0064267

3. Peng, J; Grayson, M; Snyder, GJ (2021) Matter of Opinion What makes a material
bendable? A thickness-dependent metric for bendability, malleability, ductility
MATTER, Vol 4, Is 9, pp.2694-2696, DOI: https://doi.org/10.1016/j.matt.
2021.07.015

4. Cox, ME; Schwalbach, EJ; Blaiszik, B; Groeber, MA (2021) AFRL Additive Man-
ufacturing Modeling Challenge Series: Overview INTEGRATING MATERIALS
AND MANUFACTURING INNOVATION, Vol 10, Is 2, pp.125-128, DOI: https:
//doi.org/10.1007/s40192-021-00215-6

5. Anand, S; Male, JP; Wolverton, C; Snyder, GJ (2021) Visualizing defect energetics
MATERIALS HORIZONS, Vol 8, Is 7, pp.1966-1975, DOI: https://doi.org/10.
1039/d1mh00397f

6. Jha, D; Gupta, V; Ward, L; Yang, ZJ; Wolverton, C; Foster, I; Liao, WK; Choud-
hary, A; Agrawal, A (2021) Enabling deeper learning on big data for materials
informatics applications SCIENTIFIC REPORTS, Vol 11, Is 1, Ar 4244, DOI:
https://doi.org/10.1038/s41598-021-83193-1

https://doi.org/10.1021/acs.jpcb.1c01258
https://doi.org/10.1021/acs.jpcb.1c01258
https://doi.org/10.1063/5.0064267
https://doi.org/10.1063/5.0064267
https://doi.org/10.1016/j.matt.2021.07.015
https://doi.org/10.1016/j.matt.2021.07.015
https://doi.org/10.1007/s40192-021-00215-6
https://doi.org/10.1007/s40192-021-00215-6
https://doi.org/10.1039/d1mh00397f
https://doi.org/10.1039/d1mh00397f
https://doi.org/10.1038/s41598-021-83193-1
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7. Li, L; Rumyantsev, AM; Srivastava, S; Meng, SQ; de Pablo, JJ; Tirrell, MV
(2021) Effect of Solvent Quality on the Phase Behavior of Polyelectrolyte Com-
plexes MACROMOLECULES, Vol 54, Is 1, pp.105-114, DOI: https://doi.org/
10.1021/acs.macromol.0c01000

8. Gupta, V; Choudhary, K; Tavazza, F; Campbell, C; Liao, WK; Choudhary, A;
Agrawal, A (2021) Cross-property deep transfer learning framework for enhanced
predictive analytics on small materials data NATURE COMMUNICATIONS, Vol
12, Is 1, Ar 6595, DOI: https://doi.org/10.1038/s41467-021-26921-5

9. Ma, BR; de la Cruz, MO (2021) A Perspective on the Design of Ion-Containing
Polymers for Polymer Electrolyte Applications JOURNAL OF PHYSICAL CHEM-
ISTRY B, Vol 125, Is 12, pp.3015-3022, DOI: https://doi.org/10.1021/acs.
jpcb.0c08707

10. Jha, D; Narayanachari, KVLV; Zhang, RF; Keane, DT; Liao, WK; Choudhary,
A; Chung, YW; Bedzyk, MJ; Agrawal, A (2021) Enhancing Phase Mapping
for High-throughput X-ray Diffraction Experiments using Fuzzy Clustering PRO-
CEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON PATTERN
RECOGNITION APPLICATIONS AND METHODS (ICPRAM), pp.507-514, DOI:
https://doi.org/10.5220/0010229905070514

11. Huang, W; Chen, JH; Wang, G; Yao, Y; Zhuang, XM; Pankow, RM; Cheng, YH;
Marks, TJ; Facchetti, A (2021) Dielectric materials for electrolyte gated transistor
applications JOURNAL OF MATERIALS CHEMISTRY C, Vol 9, Is 30, pp.9348-
9376, DOI: https://doi.org/10.1039/d1tc02271g

12. van Beek, A; Ghumman, UF; Munshi, J; Tao, SY; Chien, TY; Balasubramanian,
G; Plumlee, M; Apley, D; Chen, W (2021) Scalable Adaptive Batch Sampling in
Simulation-Based Design With Heteroscedastic Noise JOURNAL OF MECHAN-
ICAL DESIGN, Vol 143, Is 3, Ar 31709, DOI: https://doi.org/10.1115/1.
4049134

13. Li, JJ; Rincon-Delgadillo, PA; Suh, HS; Mannaert, G; Nealey, PF (2021) Under-
standing Kinetics of Defect Annihilation in Chemoepitaxy-Directed Self-Assembly
ACS APPLIED MATERIALS & INTERFACES, Vol 13, Is 21, pp.25357-25364,
DOI: https://doi.org/10.1021/acsami.1c03830

14. Abdellaoui, L; Chen, ZW; Yu, Y; Luo, T; Hanus, R; Schwarz, T; Villoro, RB;
Cojocaru-Miredin, O; Snyder, GJ; Raabe, D; Pei, YZ; Scheu, C; Zhang, SY (2021)
Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductiv-
ity of PbTe Thermoelectrics ADVANCED FUNCTIONAL MATERIALS, Vol 31, Is
20, Ar 2101214, DOI: https://doi.org/10.1002/adfm.202101214

15. Saha, S; Kafka, OL; Lu, Y; Yu, C; Liu, WK (2021) Microscale Structure to Property
Prediction for Additively Manufactured IN625 through Advanced Material Model
Parameter Identification INTEGRATING MATERIALS AND MANUFACTUR-
ING INNOVATION, Vol 10, Is 2, pp.142-156, DOI: https://doi.org/10.1007/
s40192-021-00208-5

16. Adekoya, AH; Zhang, YH; Peters, M; Male, J; Chart, Y; Dong, J; Franks, R; Furlong,
A; Guo, BH; Agne, MT; Olson, G; Snyder, GJ (2021) Iterative design of a high zT
thermoelectric material APPLIED PHYSICS LETTERS, Vol 119, Is 20, Ar 202101,
DOI: https://doi.org/10.1063/5.0069327

17. Chen, YL; Shull, KR (2021) Processing Polyelectrolyte Complexes with Deep
Eutectic Solvents ACS MACRO LETTERS, Vol 10, Is 10, pp.1243-1247, DOI:
https://doi.org/10.1021/acsmacrolett.1c00494

https://doi.org/10.1021/acs.macromol.0c01000
https://doi.org/10.1021/acs.macromol.0c01000
https://doi.org/10.1038/s41467-021-26921-5
https://doi.org/10.1021/acs.jpcb.0c08707
https://doi.org/10.1021/acs.jpcb.0c08707
https://doi.org/10.5220/0010229905070514
https://doi.org/10.1039/d1tc02271g
https://doi.org/10.1115/1.4049134
https://doi.org/10.1115/1.4049134
https://doi.org/10.1021/acsami.1c03830
https://doi.org/10.1002/adfm.202101214
https://doi.org/10.1007/s40192-021-00208-5
https://doi.org/10.1007/s40192-021-00208-5
https://doi.org/10.1063/5.0069327
https://doi.org/10.1021/acsmacrolett.1c00494
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18. Duong, TC; Paulson, NH; Stan, M; Chaudhuri, S (2021) An efficient approxi-
mation of the supercell approach to the calculation of the full phonon spectrum
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THER-
MOCHEMISTRY, Vol 72, Is ,Ar 102215, DOI: https://doi.org/10.1016/j.
calphad.2020.102215

19. Gabriel, JJ; Paulson, NH; Duong, TC; Becker, CA; Tavazza, F; Kattner, UR; Stan,
M (2021) Bayesian automated weighting of aggregated DFT, MD, and experimental
data for candidate thermodynamic models of aluminum with uncertainty quantifi-
cation MATERIALIA, Vol 20, Ar 101216, DOI: https://doi.org/10.1016/j.
mtla.2021.101216

20. Huang, TY; Gao, JY; Sun, QP; Zeng, D; Su, XM; Liu, WK; Chen, W (2021)
Stochastic nonlinear analysis of unidirectional fiber composites using image-based
microstructural uncertainty quantification COMPOSITE STRUCTURES, Vol 260,
Ar 113470, DOI: https://doi.org/10.1016/j.compstruct.2020.113470

21. Saha, S; Kafka, OL; Lu, Y; Yu, C; Liu, WK (2021) Macroscale Property Prediction
for Additively Manufactured IN625 from Microstructure Through Advanced Homog-
enization INTEGRATING MATERIALS AND MANUFACTURING INNOVATION,
Vol 10, Is 3, pp.360-372, DOI: https://doi.org/10.1007/s40192-021-00221-8

22. Marras, AE; Campagna, TR; Vieregg, JR; Tirrell, MV (2021) Physical Property
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79. Ward, L; Dandu, N; Blaiszik, B; Narayanan, B; Assary, RS; Redfern, PC; Foster,
I; Curtiss, LA (2021) Graph-Based Approaches for Predicting Solvation Energy
in Multiple Solvents: Open Datasets and Machine Learning Models JOURNAL
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MATERIALS PROCESSING TECHNOLOGY, Vol 291, Is ,Ar 117048, DOI: https:
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networks ADDITIVE MANUFACTURING, Vol 48, PART B, Ar 102449, DOI:
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Protease Noncovalent Inhibitor. Journal of chemical information and modeling, Vol
62, Is 1, pp.116-128, DOI: https://doi.org/10.1021/acs.jcim.1c00851
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SCIENCE, DOI: https://doi.org/10.1002/pol.20210321
98. Moore, DC; Jawaid, A; Busch, R; Brothers, M; Miesle, P; Miesle, A; Rao, R;

Lee, J; Beagle, LK; Motala, M; Wallace, SG; Downing, JR; Roy, A; Muratore,
C; Hersam, MC; Vaia, R; Kim, S; Glavin, NR (2022) Ultrasensitive Molecular
Sensors Based on Real-Time Impedance Spectroscopy in Solution-Processed 2D
Materials ADVANCED FUNCTIONAL MATERIALS, Vol 32, Is 12, Ar 2106830,
DOI: https://doi.org/10.1002/adfm.202106830

99. Sangwan, VK; Rangnekar, SV; Kang, J; Shen, JN; Lee, HS; Lam, D; Shen, JH;
Liu, XL; de Moraes, ACM; Kuo, LD; Gu, J; Wang, HH; Hersam, MC (2021)
Visualizing Thermally Activated Memristive Switching in Percolating Networks of
Solution-Processed 2D Semiconductors ADVANCED FUNCTIONAL MATERIALS,
Vol 31, Is 52, Ar 2107385, DOI: https://doi.org/10.1002/adfm.202107385

100. Male, JP; Abdellaoui, L; Yu, Y; Zhang, SY; Pieczulewski, N; Cojocaru-Miredin,
O; Scheu, C; Snyder, GJ (2021) Dislocations Stabilized by Point Defects Increase
Brittleness in PbTe ADVANCED FUNCTIONAL MATERIALS, Vol 31, Is 52, Ar
2108006, DOI: https://doi.org/10.1002/adfm.202108006

101. Zhang, XH; Li, GP; Mukherjee, S; Huang, W; Zheng, D; Feng, LW; Chen, Y; Wu,
JL; Sangwan, VK; Hersam, MC; DeLongchamp, DM; Yu, JS; Facchetti, A; Marks,
TJ (2021) Systematically Controlling Acceptor Fluorination Optimizes Hierarchical
Morphology, Vertical Phase Separation, and Efficiency in Non-Fullerene Organic
Solar Cells ADVANCED ENERGY MATERIALS, Vol 12, Is 1, Ar 2102172, DOI:
https://doi.org/10.1002/aenm.202102172

102. Li, X-G., Blaiszik, B., Schwarting, M.E., Jacobs, R., Scourtas, A., Schmidt, K.
J., Voyles, P.M., and, Morgan, D. (2021) Graph network based deep learning of
bandgaps, JOURNAL OF CHEMICAL PHYSICS, Vol. 155, no. 15: 154702., DOI:
https://doi.org/10.1063/5.0066009

103. Wei, J., Blaiszik, B., Morgan, D., and, Voyles P. (2021), Benchmark tests of atom-
locating CNN models with a consistent dataset, MICROSCOPY AND MICRO-
ANALYSIS, Vol. 27, No. S1, pp.2518-2520, DOI: https://doi.org/10.1017/
S1431927621008989

16.2 Presentations

CHiMaD principle investigators and researchers have presented their CHiMaD-funded
work in 126 presentations in 2021. In addition, some groups, such as Phase Field Methods,
UQPET, have organized CHiMaD focus workshops in their areas; detailed information on
these events can be found under the Outreach chapter.

1. Zhehao Zhu, Joon-Seok Kim, Michael Moody, and Lincoln J. Lauhon, Towards the
rational design of printed 2D materials, 63rd EMC Meeting, June 2021, Virtual Oral
Presentation

2. G. B. Olson, “Genomic Materials Design: From CALPHAD to Flight,” MRSEC
Colloquium, UC-Irvine, 2/12/21 (virtual)

3. G. B. Olson, “Computational Materials Design: Affordable Change,” Alternative
Materials Workshop, Boston University, 2/17/21 (virtual)

4. G. B. Olson, “Genomic Computational Design: Materials for Sustainability,” TMS
Annual Meeting, 3/15/21 (virtual)

5. G. B. Olson, “Genomic Materials Design: From CALPHAD Data to Flight,” Hume-
Rothery Symposium, TMS Annual Meeting, 3/15/21 (virtual)
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6. G. B. Olson, “Concurrent Design of a Multimaterial Niobium Alloy System for Next-
generation Turbine Applications,” ARPA-E ULTIMATE Program Kickoff, 3/19/21
(virtual)

7. G. B. Olson, “Genomic Materials Design: From CALPHAD to Flight,” U. Pittsburgh,
3-22-21 (virtual)

8. G. B. Olson, “HSLA150 Design,” DoD Steel Performance Initiative Meeting, 3/31/21
(virtual)

9. G. B. Olson, “HSLA150 Design,” Navy FCS Seminar, Naval Surface Warfare Center
Carderock Division, 4/8/21 (virtual)

10. G. B. Olson, “Genomic Materials Design: From CALPHAD to Flight,” MIT DMSE
3.020 Thermodynamics class Guest lecture, 4/28/21(virtual)

11. G. B. Olson, “Biological Martensitic Transformations,” MIT DMSE Faculty Lunch
Talk, 5-14-21 (virtual)

12. G. B. Olson, “Genomic Materials Design: CALculated PHase Dynamics,” CAL-
PHAD’21, 6/17/21 (virtual)

13. G. B. Olson, “Genomic Materials Design: Present & Future,” ASM Materials
Genome Teachers Camp, 7/23/21 (virtual)

14. G. B. Olson, “Materials Genome Advances,” Materials Genome Engineering Center
Advisory Meeting, USTB Beijing 9/23/21 (virtual)

15. G. B. Olson, “Materials Design Overview,” SRG Design Consortium Annual Meet-
ing, 10/5/21 (virtual)

16. G. B. Olson, “Designing Materials Design,” Sir H.K.D.H. Bhadeshia Retirement
Symposium, U. Cambridge, 11/11/21 (virtual)

17. G. B. Olson, “State of the Genome,” NSF DMREF Review Panel, 11/17/21 (virtual)
18. Saha, S., Gan, Z., Xie, X., Liu, W. K., Exploring Machine Learning Techniques to

Obtain Salient Relationship between Thermal History and Mechanical Properties of
Additively Manufactured IN718, 14th WCCM and Eccomas Congress, Paris, France,
11-15 January, 2021.

19. Saha, S., Lu, Y., Liu, W. K., Advanced Identification of Material Law for Micro- and
Macro-deformation of Additively Manufactured Alloys, USNCCM16, Chicago, IL,
USA, 25-29 July, 2021.

20. Saha, S., Gan, Z., Xie, X., Liu, W. K., Mechanistic Wavelet-based Deep Learning
(MWDL) for Virtual Experimentation and Classification, MMLDT-CSET, San Diego,
CA, USA, 26-29 Sep, 2021

21. Xie, X., Gan, Z., Saha, S., Liu, W. K., Mechanistic digital twin of metal additive
manufacturing, MMLDT-CSET, San Diego, CA, USA, 26-29 Sep, 2021.

22. Xie, X., Gan, Z., Liu, W. K., DimensionNet: A Deep Learning Network for Dis-
covering Dimensionless Numbers, USNCCM16, Chicago, IL, USA, 25-29 July,
2021.

23. Lu, Y., Jones, K., Gan, Z., Liu, W. K., Efficient hyper-reduced order model for
additive manufacturing thermal fluid analysis, USNCCM16, Chicago, IL, USA,
25-29 July, 2021.

24. Lu, Y., Cheng, L., Liu, W. K., CNN enhanced hyper-reduced order model for additive
manufacturing thermal fluid analysis, MMLDT-CSET, San Diego, CA, USA, 26-29
Sep, 2021

25. S. Liao, S. Webster, K. Ehmann, J. Cao, “Simulation-guided Melt Pool Control in
Directed Energy Deposition”, ASTM-ICAM 2021, November 1, 2021, California,
USA
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26. W. Tso, C. Liu, D. Seidman, and G. Olson, Computational Design of high-temperature,
creep-resistant, printable, Co-based superalloys, 37th Steel Research Group Annual
Meeting, October 5, 2021, Virtual

27. W. Tso, W. Wu, D. Seidman, O. Heinonen, Machine learning aided phase-field
sensitivity analysis, CHiMaD Phase Field Methods XII, November 3, 2021, Virtual

28. A. Adekoya, W. Tso, H. Zhang, W. Chen, D. Seidman, J. Snyder, Predicting finite
temperature formation energies of multicomponent phases using physics-informed
data-driven modeling, PSED-510 course, December 10, 2021, Northwestern Univer-
sity, Evanston, IL

29. S. Keten, Ideas for Creating Impact Resistant Polymeric Materials by Tuning Molec-
ular Topology, UCSD, 2021 (Invited Virtual Seminar)

30. S. Keten, Ideas for Creating Impact Resistant Polymeric Materials by Tuning Molec-
ular Topology, Bogazici University, 2021 (Invited Virtual Seminar)

31. S. Keten, Ideas for Creating Impact Resistant Polymeric Materials by Tuning Molec-
ular Topology, Stevens Institute of Technology, 2021 (Invited Virtual Seminar)

32. S. Keten, Ideas for Creating Impact Resistant Polymeric Materials by Tuning Molec-
ular Topology, UT San Antonio, 2021 (Invited Virtual Seminar)

33. S. Keten, Ideas for Creating Impact Resistant Polymeric Materials by Tuning Molec-
ular Topology, APS March Meeting, Virtual, 2021. (Invited Talk)

34. W. Chen, “Adaptive Discovery and Mixed-Variable Optimization of Next Genera-
tion Synthesizable Microelectronic Materials”, Conference Keynote, 5th Forum of
Materials Genome Engineering, Zhen Zhou, China, Dec 14, 2021.

35. W. Chen, “Computational Design of Multifunctional Materials and Structures”,
Panelist, National Academy Workshops on Convergent Manufacturing, Panel on
Multifunctional Materials Design, November 15, 2021.

36. W. Chen, “Interdisciplinary Data-driven Design of Engineered Materials Systems”,
Conference Keynote, 4th National Conference on Multidisciplinary Design, Analysis,
& Optimization (NCMDAO), October 9th, 2021, India.

37. W. Chen, “Data-Driven Design of Engineered Materials Systems: From Nano- to
Metamaterials”, Conference Plenary Speaker, International Conference of Mechani-
cal Design & the 19th Mechanical Design Annual Conference (ICMD2021), August
12, 2021, Changsha, China.

38. W. Chen, “Data-Driven Design of Engineered Materials Systems: Challenges and
Opportunities”, Conference Plenary Speaker, 16th U.S. National Congress on Com-
putational Mechanics (USCCM), July 26, 2021, Chicago USA.

39. W. Chen, “Data-Driven Design of Engineered Materials Systems”, Keynote Speaker,
KTH Solid Mechanics seminar series, May 20, 2021.

40. W. Chen, “Data-Driven Design of Microstructural Material Systems”, Invited Speaker,
Data Science for Materials Discovery, I-AIM Seminar Series, Feb 19, 2021.

41. W. Chen, “Data-Centric Mixed Variable Bayesian Optimization for Materials De-
sign”, Invited Speaker, American Physical Society March Meeting 2021.

42. W. Chen, “Multiscale and Multidimensional Quantification and Propagation of
Manufacturing Induced Uncertainty”, Invited Keynote Speaker, 2021 AIAA Non-
Deterministic Approaches (NDA) Conference, January 11, 2021.

43. W. Chen, “Data-Driven Design of Microstructural Materials Systems”, Department
Seminar, Materials Science and Engineering, Carnegie Mellon University, November
12, 2021.
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44. W. Chen, “Data-Driven Design of Engineered Materials Systems”, Distinguished
Seminar, Engineering, co-sponsored by Engineering Design and Convergence Center
for Living Multifunctional Material Systems, Penn State, November 8, 2021.

45. W. Chen, “Data-Driven Design of Engineered Materials Systems”, Department
Seminar, Mechanical and Aerospace Engineering, Case Western University, May 4,
2021.

46. W. Chen, “Data-Driven Design of Engineered Materials Systems”, MAE Distin-
guished Scholar Lecture, Arizona State University, April 9, 2021.

47. D. Da., W. Chen, “Data-driven and Topological Design of Structural Metamateri-
als for Fracture Resistance”, the 16th U.S. National Congress on Computational
Mechanics (USNCCM), a virtual conference held at Chicago, USA, 25 – 29 July
202.

48. D. Da., W. Chen, “Tailoring fracture properties of brittle structural materials”, the
14th World Congress of Structural and Multidisciplinary Optimization (WCSMO-14),
13 – 18 June 2021.

49. D. Da., W. Chen, “Data-driven and Topological Design of Structural Metamaterials
for Fracture Resistance”, WebCongress on Metamaterials organized by the Interna-
tional Association of Advanced Materials (IAAM), Invited Speaker, 25 – 26 February
2021.

50. A. van Beek, A. Giuntoli, N Hansogi, S. Keten, and W. Chen, (May-2021) Uncer-
tainty Quantification in Functional Model Calibration: An Application in Coarse-
Grained Epoxy Models. SIAM Conference on Mathematical Aspects of Materials
Science. Virtual. Bilbao, Spain.

51. A. Choudhary (Invited), “AI for Science and Science of AI”, Nanocombinatorics
Workshop on Science of AI, August 19, 2021, Virtual.

52. A. Agrawal (Invited), “Artificial Intelligence and High-Performance Data Mining for
Accelerating Scientific Discovery”, US Army DEVCOM CBC Seminar on AI/ML
Applications, November 10, 2021, Virtual.

53. A. Agrawal (Invited), “Introduction to Machine Learning and Deep Learning for
Materials Science”, TMS Online Course: Artificial Intelligence in Materials Science
and Engineering, November 02, 2021, Virtual.

54. A. Agrawal (Invited), “Artificial Intelligence and High-Performance Data Mining
for Accelerating Scientific Discovery”, BiGmax Summer School on Harnessing Big
Data in Materials Science from Theory to Experiment, September 15, 2021, Max
Plank Institute, Germany (Virtual).

55. A. Agrawal (Invited), “AI for Accelerating Materials Discovery and Design”, Nanocom-
binatorics Workshop on Science of AI, August 19, 2021, Virtual.

56. A. Agrawal (Invited), “Artificial Intelligence and High-Performance Data Mining
for Accelerating Scientific Discovery”, ULTRA DOE-EFRC Seminar, June 28, 2021,
Virtual.

57. A. Agrawal (Invited), “Artificial Intelligence and High-Performance Data Mining
for Accelerating Scientific Discovery”, NSF Workshop on Accelerating Materials
Discovery, Design, and Synthesis: A Grand Challenge for Artificial Intelligence
(AIMS): AI Panel, April 09, 2021, Virtual.

58. A. Agrawal (Invited), “Deep Materials Informatics: Illustrative Applications of
Deep Learning in Materials Science”, TMS Webinar Series: Artificial Intelligence in
Materials: Research, Design, and Manufacturing, February 04, 2021, Virtual.
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59. A. Agrawal (Keynote), “Artificial Intelligence and High-Performance Data Mining
for Accelerating Scientific Discovery”, 11th International Conference on Cloud
Computing, Data Science & Engineering (CONFLUENCE) 2021, January 29, 2021,
Virtual.

60. A. Agrawal (Invited), “AI and High-Performance Data Mining: Illustrative Appli-
cations in Materials Science”, Indian Symposium on Machine Learning (IndoML),
December 16, 2020, Virtual.

61. D. Jha, K. V. L. V. Narayanachari, R. Zhang, D. T. Keane, W. Liao, A. Choudhary,
Y.-W. Chung, M. J. Bedzyk, and A. Agrawal, “Enhancing Phase Mapping for High-
throughput X-ray Diffraction Experiments using Fuzzy Clustering,” International
Conference on Pattern Recognition Applications and Methods (ICPRAM), February
2021.

62. Z. Yang, T. Watari, D. Ichigozaki, A. Mitsutoshi, H. Takahashi, Y. Suga, W. Liao, A.
Choudhary, and A. Agrawal, “Heterogeneous feature fusion based machine learn-
ing on shallow-wide and heterogeneous-sparse industrial datasets,” ICPR Workshop
on Industrial Machine Learning (IML), January 2021.

63. W. Loo, H.Feng, R. Ruiz, P. Nealey, Fine Tuning the Interaction Parameter for Sub-
10 nm Block Copolymer Directed Self-Assembly, American Institute of Chemical
Engineers Annual Meeting, Nov 2021, Boston MA.

64. H.Feng, Facile Control of block surface energy via clickable modification of polystyrene-
block-polybutadiene enabling topcoat-free directed self-assembly with thermal an-
nealing, American Chemical Society Fall Meeting, Aug 2021, Virtual Format.

65. W. Loo, C. Zhu, C. Wang, High Throughput and in-situ Scattering Experiments at
the ALS, Advanced Light Source User Meeting, Aug 2021, Virtual Format.

66. W. Loo, H. Feng, D. Sunday, P. Nealey, Determining Lamellar Structure with Soft
X-ray Reflectivity, American Physical Society March Meeting, March 2021, Virtual
Format.

67. D. Sunday, J. Thelen, C. Zhou, J. Ren, R.J. Kline, P. Nealey, Probing Buried
Interfaces in Polymers with Soft X-ray reflectivity, American Physical Society March
Meeting, Mar 2021, Virtual Format.

68. Y. Dahal, H. Feng, J. de Pablo, P. Nealey, R.J. Kline, D. Audus, Designing A-b-(B-
r-C) copolymers for lithographic applications, American Physical Soceity March
Meeting, Mar 2021, Virtual Format.

69. N.D. Dolinski, K.M. Herbert, S.J. Rowan "Highly tunable, catalyst-free dynamic co-
valent bonds and their incorporation into networks" ACS National Meeting, Atlanta,
GA August, 2021.

70. C. Chen, M. van de Naald, A. Singh, J. Jureller, S. Rowan "Impact of glass transition
temperature on the shear jamming of polymeric particle suspensions" ACS National
Meeting, Atlanta, GA August, 2021.

71. G.L. Jackson, J.M. Dennis, N. Dolinski, C. Eom, S. Rowan, H. Jaeger; “Designing
Stress-adaptive Dense Suspensions using Dynamic Covalent Chemistry.” 2021 APS
National March Meeting (Abstract J04.00009), March 16, 2021, virtual

72. G.L. Jackson, J.M. Dennis, N. Dolinski, C. Eom, S. Rowan, H. Jaeger; “Designing
Stress-adaptive Dense Suspensions using Dynamic Covalent Chemistry.”, Pfizer
Chemistry Connect, November 9, 2021, virtual

73. A. Singh; “Shear Thickening in Dense Suspensions: The Constraints and a Master
Curve” UIC Chemical Engineering Seminar, UIC, IL, USA (virtual) January 2021.
(Invited)
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74. A. Singh; “Macroscopic response as a lens to particle properties in dense suspensions”
STMS Virtual Seminar Series 2022. (Invited)

75. A. Singh; “Dynamics of Complex Fluids and Soft Materials” AIChE Annual Meeting,
Boston (MA) November 2021.

76. A. Singh, J.J. de Pablo, H.M. Jaeger; “Shear thickening: A transition from uncon-
strained to the constrained state” SOR Meeting, Bangor (ME) October 2021.

77. A. Singh, G.L. Jackson, M. Van der Naald, J.J. de Pablo, H.M. Jaeger; “Quanti-
fying the influence of rolling friction on force networks and rheology in sheared
suspensions” APS March Meeting, (Virtual) March 2021.

78. P. Voorhees, The Materials Genome Initiative and Additively Manufactured Metals:
New Computational Tools and the Central Role of Materials, SOLID research group,
Danish Technical University, virtual, 2/21.

79. P. Voorhees, Towards Rapid Throughout Measurement of Grain Boundary Properties,
Institute for Mathematical and Statistical Innovation, University of Chicago, virtual,
2/21.

80. P. Voorhees, Grain Growth in Polycystals, Metallurgy and Materials Society of the
Canadian Institute of Metals. Virtual 6/21.

81. R. Gurunathan et al. Modeling Thermoelectric Properties in a Multicomponent Alloy
Space. Virtual Conference on Thermoelectrics 2021.

82. J. Male et al. Thermal Evolution of Internal Strain in Doped PbTe. Virtual Conference
on Thermoelectrics 2021.

83. R. Gurunathan et al. Modeling Thermoelectric Properties in a Multicomponent Alloy
Space. MRS Fall Meeting 2021.

84. R. Gurunathan et al. Engineering Thermal Conductivity in Thermoelectric Materials.
MRS Fall Meeting 2021.

85. J. Male et al. Dislocations Stabilized by Point Defects Increase Brittleness in PbTe.
MRS Fall Meeting 2021.

86. M. C. Hersam (Keynote), “Mixed-dimensional heterostructures for electronic and
energy technologies,” presented orally by M. C. Hersam at the University of Chicago
Materials Research Science and Engineering Center Annual Symposium, Chicago,
Illinois (12/7/21).

87. M. C. Hersam (Invited), “Mixed-dimensional heterostructures for electronic and
energy technologies,” presented orally by M. C. Hersam at the Boston College
Physics Colloquium, Boston, Massachusetts (12/1/21).

88. M. C. Hersam (Invited), “Design and applications of printable two-dimensional
material inks,” presented orally by M. C. Hersam at the Materials Research Society
Fall Meeting, Boston, Massachusetts (12/1/21).

89. M. C. Hersam (Invited), “Realizing biomimetic neuromorphic functionality with
two-dimensional material electronic devices,” presented orally by M. C. Hersam at
the Materials Research Society Fall Meeting, Boston, Massachusetts (11/30/21).

90. M. C. Hersam (Invited), “Two-dimensional neuromorphic computing materials and
devices,” presented orally and virtually by M. C. Hersam at the 11th International
Symposium of the Gunma University Initiative for Advanced Research, hosted in
Gunma, Japan (11/23/21).

91. M. C. Hersam (Invited), “Chemically tailored two-dimensional materials for elec-
tronic and energy technologies,” presented orally and virtually by M. C. Hersam at
the Imperial College London Department of Chemistry Seminar Series, hosted in
London, England (11/18/21).
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92. M. C. Hersam (Invited), “Chemically tailored two-dimensional materials for elec-
tronic and energy technologies,” presented orally and virtually by M. C. Hersam
at the 2nd KAIST Emerging Materials e-Symposium, hosted in Daejeon, Korea
(11/18/21).

93. M. C. Hersam (Invited), “Chemically tailoring interfaces in two-dimensional het-
erostructures,” presented orally and virtually by M. C. Hersam at the AVS 67th
International Symposium, hosted in Charlotte, North Carolina (10/25/21).

94. M. C. Hersam (Keynote), “Chemically tailored two-dimensional materials for elec-
tronic and energy technologies,” presented orally and virtually by M. C. Hersam at
the Beijing Graphene Forum, hosted in Beijing, China (10/24/21).

95. M. C. Hersam (Invited), “Chemically tailored two-dimensional materials for elec-
tronic and energy technologies,” presented orally and virtually by M. C. Hersam at
the King Fahad University Materials Science and Engineering Colloquium, hosted in
Dhahran, Saudi Arabia (10/7/21).

96. M. C. Hersam, “Mixed-dimensional heterostructures for electronic and energy
technologies,” presented orally and virtually by M. C. Hersam at the Center for
Integrated Nanotechnologies Annual Meeting, hosted in Los Alamos, New Mexico
(9/22/21).

97. M. C. Hersam (Plenary), “Two-dimensional materials as a platform for mixed-
dimensional heterostructures,” presented orally and virtually by M. C. Hersam at
the Global Summit on Graphene and 2D Materials: 2DMAT2021, hosted in Paris,
France (8/25/21).

98. M. C. Hersam (Invited, AAAFM STODDART Award) M. C. Hersam, “Chemically
tailored 2D materials for electronic and energy technologies,” presented orally and
virtually by M. C. Hersam at the AAAFM-UCLA International Conference on
Advances in Functional Materials, hosted in Los Angeles, California (8/19/21).

99. M. C. Hersam (Invited), “Mixed-dimensional heterostructures for electronic and
energy technologies,” presented orally and virtually by M. C. Hersam at the Tsinghua
University Xuetang Lecture Series, hosted in Beijing, China (7/14/21).

100. M. C. Hersam (Plenary), “Mixed-dimensional heterostructures for electronic and
energy technologies,” presented orally and virtually by M. C. Hersam at the Interna-
tional Conference on Advanced Materials for Better Tomorrow, hosted in Varanasi,
India (7/13/21).

101. M. C. Hersam (Invited), “Chemically tailored two-dimensional materials for elec-
tronic and energy technologies,” presented orally and virtually by M. C. Hersam at
the Hybrid Inorganic/Organic Systems Collaborative Research Centre Colloquium,
hosted in Berlin, Germany (6/17/21).

102. M. C. Hersam (Invited), “Fundamentals and applications of hexagonal boron nitride
ionogels,” presented orally and virtually by M. C. Hersam at the 239th Electrochemi-
cal Society Meeting, hosted in Chicago, Illinois (6/3/21).

103. M. C. Hersam (Keynote), “Chemically tailored two-dimensional materials for elec-
tronic and energy technologies,” presented orally and virtually by M. C. Hersam
at the Sigma-Aldrich Materials Science Midwest Symposium, hosted in St. Louis,
Missouri (5/13/21).

104. M. C. Hersam (Invited), “Chemically tailoring interfaces in two-dimensional het-
erostructures,” presented orally and virtually by M. C. Hersam at the Materials
Research Society Spring Meeting 2021, hosted in Phoenix, Arizona (4/18/21).
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105. M. C. Hersam (Invited), “Gate-tunable neuromorphic devices enabled by low-
dimensional materials,” presented orally and virtually by M. C. Hersam at the TMS
Annual Meeting, hosted in Orlando, Florida (3/16/21).

106. M. C. Hersam (Invited), “Fundamentals and applications of mixed-dimensional
heterostructures,” presented orally and virtually by M. C. Hersam at the New York
University Chemical and Biomolecular Engineering Colloquium Series, hosted in
New York, New York (3/5/21).

107. M. C. Hersam (Keynote), “Chemically tailored two-dimensional materials for elec-
tronic and energy technologies,” presented orally and virtually by M. C. Hersam
at the International Conference on Recent Trends in 2D Nanomaterials, hosted in
Mumbai, India (2/24/21).

108. M. C. Hersam (Invited), “Fundamentals and applications of mixed-dimensional
heterostructures,” presented orally and virtually by M. C. Hersam at the University
of Illinois Materials Science and Engineering Colloquium Series, hosted in Urbana,
Illinois (2/8/21).

109. Z. Zhu, J-S. Kim, M. Moody, and L. J. Lauhon, Towards the rational design of
printed 2D materials, 63rd EMC Meeting, June 2021, Virtual Oral Presentation

110. N. Paulson, C. E. Campbell, B. Gulsoy Uncertainty Quantification of Phase Equi-
libria and Thermodynamics Workshop (Intro)”, 2nd Annual UQPET Workshop,
10/27/2021, Lemont, IL (virtual)

111. N. Paulson, J. Gabriel, T. Duong, M. Stan, “Uncertainty Quantification in Computa-
tional Thermodynamics – From the Atomistic to the Continuum Scale,” The 150th
TMS Annual Meeting and Exhibition, March 14-18, 2021, Orlando, FL (virtual)

112. J. Gabriel, N. Paulson, T. Duong, M. Stan, “Uncertainty Quantification for Compu-
tational Thermodynamics” CHiMaD 2021 Annual meeting, January 24th-25th 2022
(virtual)

113. Z. Hong, “Gold Panning: Automatic Extraction of Scientific Information from
Publications”, September 20-23, 2021, eScience 2021 (poster).

114. T.Skluzacek, “Automated metadata extraction to make data swamps more navigable.”
(Sandia Labs, Invited Talk)

115. T.Skluzacek, “Enabling Data Utility Across the Sciences”, UChicago Rising Stars
Summit.

116. L.C. Brinson, D. Elbert, P. Voorhees, L. Bartolo, B. Blaiszik, E. De Guire, V.
Doan-Nguyen, I. Foster, S. Kalinin, B. Kozinsky, A. Mehta, A. Strachan. “Day 1
Workshop - Driving Infrastructure Forward – Materials in the Era of FAIR Data”.
2021 MaRDA Annual Meeting, Feb. 23, online.

117. L.C. Brinson, D. Elbert, P. Voorhees, L. Bartolo, B. Blaiszik, E. De Guire, V.
Doan-Nguyen, I. Foster, S. Kalinin, B. Kozinsky, A. Mehta, A. Strachan. “Day 1
Workshop - Driving Infrastructure Forward – Materials in the Era of FAIR Data”.
2021 MaRDA Annual Meeting, Feb. 23, online.

118. L.C. Brinson, D. Elbert, P. Voorhees, L. Bartolo, B. Blaiszik, E. De Guire, V. Doan-
Nguyen, I. Foster,S. Kalinin, B. Kozinsky, A. Mehta, A. Strachan. “Connecting
Materials Infrastructure – Growing the State of the Art”. 2021 MaRDA Annual
Meeting, Feb. 24, online.

119. L.C. Brinson, D. Elbert, P. Voorhees, L. Bartolo, B. Blaiszik, E. De Guire, V. Doan-
Nguyen, I. Foster,, S. Kalinin, B. Kozinsky, A. Mehta, A. Strachan. “Education
and Workforce Development – Integrating Curricula and Research”. 2021 MaRDA
Annual Meeting, Feb. 25, online.
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120. B. Blaiszik, I. Foster. “A FAIR Approach Towards Fully Realizing the Impact of AI
and Machine Learning Materials Science”. NIST Office of Data Informatics Seminar.
Dec 14, 2021.

121. B. Blaiszik, I. Foster, “Advanced Robotics and Software Defined Automation to
Speed Materials Discovery” AI/ML for Particle Accelerator, X-Ray Beamlines and
Electron Microscopy. Nov. 3, 2021.

122. B. Blaiszik, I. Foster, “A FAIR Approach Towards Fully Realizing the Impact of
AI and Machine Learning Materials Science”. University of Illinois at Urbana-
Champaign Pathways Seminar. Jul 07, 2021.

123. L. Ward. "Introduction to ML and Effective Data Practices in Materials Science",
CHiMaD Annual Meeting June 21, 2021.

124. A. Scourtas, KJ Schmidt, B. Blaiszik. "Publishing, Discovering, and Using Data
with the Materials Data Facility, DLHub, and Foundry", CHiMaD Annual Meeting
June 21, 2021.

125. Z. Hong, "Update on MDF Natural Language Processing Applications", CHiMaD
Annual Meeting June 21, 2021.

126. B. Blaiszik, I. Foster. “A FAIR Approach Towards Fully Realizing the Impact
of AI and Machine Learning Materials Science”. University of Illinois at Urbana-
Champaign DigiMat Seminar. April 16, 2021.

16.3 Technologies and Techniques
In 2021, CHiMaD principle investigators and researchers have published 12 software
technologies For the list below, the primary affiliation of the work published with the
CHiMaD Groups is as follows:
AI: Softwares 1-5
MDF: Softwares 6-11
Outreach: 12

1. Type: Open-Source Software
Name of Technology: LVGP: Latent Variable Gaussian Process Modeling with
Qualitative and Quantitative Input Variables
Authors: S. Tao, Y. Zhang, D.W. Apley, W. Chen
Date: 1/11/2019
Access Link: :ttps://cran.r-project.org/web/packages/LVGP/index.html
Description: code for implementing Latent Variable Approach to Gaussian Process
Modeling with Qualitative and Quantitative.

Our original LVGP code (in R) was made available to the general public through
https://cran.r-project.org/web/packages/LVGP/index.html. The code
has attracted a lot of interest during the past two years. We extracted the num-
ber of LVGP package downloads from Jan 1, 2020 to Jan 23, 2022, Figure 16.1.
The total downloads of LVGP R code from Jan 2020 are 10,764. The average daily
downloads are about 30 times, and the monthly downloads range from 265 to 646
times.

2. Type: Software
Name of Technology: Cross-property deep transfer learning framework for en-
hanced predictive analytics on small materials data
Authors: V. Gupta, K. Choudhary, F. Tavazza, C. Campbell, W.-k. Liao, A.

:%20ttps://cran.r-project.org/web/packages/LVGP/index.html
https://cran.r-project.org/web/packages/LVGP/index.html
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Figure 16.1: The number of LVGP Package downloads from Jan 1, 2020 to Jan 23, 2022.

Choudhary, and A. Agrawal
Date: November 2021
Distribution: Public
Access Link: https://github.com/NU-CUCIS/CrossPropertyTL
Description: This GitHub repository contains the code for performing cross-property
deep transfer learning. It can be used to train predictive models for target properties
with limited data, using transfer learning from pre-trained source models on big data,
even if the source property is different from the target property.

3. Type: Software
Name of Technology: Learning to Predict Crystal Plasticity at the Nanoscale: Deep
Residual Networks and Size Effects in Uniaxial Compression Discrete Dislocation
Simulations
Authors: Z. Yang, S. Papanikolaou, A. Reid, W.-k. Liao, A N. Choudhary, C.
Campbell, and A. Agrawal
Date: February 2021
Distribution: Public
Access Link: https://github.com/NU-CUCIS/PlasticityDL
Description: This GitHub repository contains code to apply deep residual networks
for predicting crystal plasticity at nanoscale. The efficacy of the proposed approach
is tested on a dataset of strain profiles to identify prior deformation history of the
material.

4. Type: Software
Name of Technology: Deep learning based domain knowledge integration for small
datasets: Illustrative applications in materials informatics
Authors: Z. Yang, R. Al-Bahrani, A. Reid, S. Papanikolaou, S. Kalidindi, W.-k.
Liao, A N. Choudhary, and A. Agrawal
Date: February 2021
Distribution: Public
Access Link: https://github.com/NU-CUCIS/DKACNN
Description: This GitHub repository contains code to apply domain knowledge-
aware convolutional neural networks (DKACNN) on small dataset. The efficacy
of the proposed approach is tested on two materials science datasets with different
types of inputs and outputs, for which domain knowledge-aware convolutional neural
networks are developed.

https://github.com/NU-CUCIS/CrossPropertyTL
https://github.com/NU-CUCIS/PlasticityDL
https://github.com/NU-CUCIS/DKACNN
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5. Type: Software
Name of Technology: Microstructural Materials Design via Deep Adversarial Learn-
ing Methodology
Authors: Z. Yang, X. Li, L.C. Brinson, A. N. Choudhary, W. Chen, and A.
Agrawal
Date: February 2021
Distribution: Public
Access Link: https://github.com/NU-CUCIS/MDGAN
Description: MDGAN is a generative adversarial network to generate materials
microstructure images for materials discovery. It is trained on synthetic 2D mi-
crostructure images and can rapidly generate new microstructure images that are
statistically similar to the training images.

6. Type: Software
Authors: J. Gaff, B. Blaiszik, L.Ward, Ian Foster
Distribution: Public
Access Link: https://github.com/materials-data-facility/connect_client

Description: MDF Connect Client. Python client to manage submissions to the
MDF Connect service.

7. Type: Software
Authors: J. Gaff, B. Blaiszik, L.Ward, Ian Foster
Distribution: Public
Access Link: https://github.com/materials-data-facility/connect_server
Description: MDF Connect Server. Code that is used to operate the MDF Connect
service

8. Type: Software
Authors: L. Ward, J. Gaff, B. Blaiszik, I. Foster
Distribution: Public
Access Link: https://github.com/materials-data-facility/MaterialsIO
Description: MaterialsIO. MaterialsIO is a repository of materials-specific metadata
extraction tools written in Python with a consistent API. These extractors form the
basis of automated extractions performed by MDF Connect.

9. Type: Software
Authors: J. Gaff, B. Blaiszik, L.Ward, Ian Foster
Distribution: Public
Access Link: https://github.com/materials-data-facility/forge
Description: MDF Forge

10. Type: Software
Authors: J. Gaff, B. Blaiszik, L.Ward, Ian Foster
Distribution: Public
Access Link: https://github.com/materials-data-facility/toolbox
Description: MDF Toolbox. MDF Toolbox is a collection of authentication and data
transfer tools that may be useful across MDF projects and other community projects

11. Since MDF focuses on delivering data services to the community, the developed
codes are critical to disseminate to the community. The code being developed in
this project is made available freely and publicly to the community through reposi-
tories on Github. Where appropriate, Python packages are automatically built and

https://github.com/NU-CUCIS/MDGAN
https://github.com/materials-data-facility/connect_client
https://github.com/materials-data-facility/connect_server
https://github.com/materials-data-facility/MaterialsIO
https://github.com/materials-data-facility/forge
https://github.com/materials-data-facility/toolbox
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available through the Python Packing Index (PyPI) and may be installed on any
Python-supported system by running the command pip install <package>. Select
Supported Codes, Services, and Repositories
Authors: J. Gaff, L. Ward, I. Foster, B. Blaiszik et al.
MDF Github Organization: https://github.com/materials-data-facility
MDF Connect Client: https://github.com/materials-data-facility/connect_
client

MDF Connect Server: https://github.com/materials-data-facility/connect_
server

MaterialsIO: https://github.com/materials-data-facility/MaterialsIO
MDF Forge: https://github.com/materials-data-facility/forge
MDF Toolbox: https://github.com/materials-data-facility/toolbox
Globus Flows: https://www.globus.org/platform/services/flows

12. Type: Software
Authors: B. Gulsoy, J. Emery, C. Houser, A. Geller
Distribution: Public
Access Link: http://chimad-trainings.rcs.northwestern.edu
Description: The CHiMaD System Design Toolbox is a web-based training and
collaboration tool which allows users to build and customize system design charts.

16.4 Inventions, Patent Applications and/or Licenses
In 2020, CHiMaD principle investigators and researchers have contributed and patented 5
technologies with the one from Impact group being a NIST-CHiMaD co-patent. For the
list below, the primary affiliation of the work published with the CHiMaD Groups is as
follows:
2D Inks: Inventions & Patents 1,2
Additive: Inventions & Patents 3
Cobalt: Inventions & Patents 4

1. Type: Invention
Name of Technology: Aerosol jet printed flexible graphene circuits for electrochem-
ical sensing and biosensing
Authors: K. Parate, S. V. Rangnekar, M. C. Hersam, and J. C. Claussen Date:
January 14, 2021
Patent Number: 17/248,211 (US patent application) and PCT/US2021/013442
(PCT international patent application)
Description: An aerosol jet graphene ink has been developed and used to print
interdigitated electrodes for flexible electrochemical sensors.

2. Type: Invention
Name of Technology: Printable ionogel inks and forming methods and applications
of same
Authors: W. J. Hyun and M. C. Hersam
Date: January 28, 2021
Patent Number: PCT/US2021/015375 (PCT international patent application)
Description: An aerosol jet printable hexagonal boron nitride ionogel ink has been
developed and utilized for electrolyte gated thin-film transistors.

https://github.com/materials-data-facility
https://github.com/materials-data-facility/connect_client
https://github.com/materials-data-facility/connect_client
https://github.com/materials-data-facility/connect_server
https://github.com/materials-data-facility/connect_server
https://github.com/materials-data-facility/MaterialsIO
https://github.com/materials-data-facility/forge
https://github.com/materials-data-facility/toolbox
https://www.globus.org/platform/services/flows
http://chimad-trainings.rcs.northwestern.edu
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3. Type: Software IP disclosure
Name of Technology: LVGP: Latent Variable Gaussian Process Modeling with
Qualitative and Quantitative Input Variables
Authors: W. Chen, D. Apley, S. Yerramilli, and R. Bostanabad.
Date: 11/1/2021
Distribution: Disc-ID-21-11-16-002
Access Link: not available yet
Description: Python code for enhanced Latent Variable GP (LVGP) Approach to
Gaussian Process Modeling with Qualitative and Quantitative Variables

4. Type: Invention
Name of Technology: Cobalt-based superalloys with stable gamma-prime precipi-
tates, method of producing same
Authors: D.C. Dunand, F. Tirado
Date: 2021-07-08 : Publication of US20210207255A1
Patent Number: US Patent App. 17/056,519
Distribution: public
Access Link: https://patents.google.com/patent/US20210207255A1/en
Description: A cobalt-based superalloy and a method of producing the same. The
superalloy includes a nominal composition comprising at least cobalt, aluminum, Z
and vanadium, Z being at least one of tantalum and niobium, processed such that the
superalloy comprises gamma and gamma-prime phases with stable gamma+gamma-
prime microstructures.

16.5 Data

For the list below, the primary affiliation of the work published with the CHiMaD Groups
is as follows:
2D Inks: Data 1-5
Thermoelectrics: Data 6-7
Impact: Data 8
AI: Data 9-13
UQ: Data 13

1. Accelerated decomposition kinetics of ammonium perchlorate via conformal
graphene coating
M. D. Garrison, S. G. Wallace, L. C. Baldwin, Z. Guo, L. Kuo, J. E. Estevez, A. L.
Briseno, M. C. Hersam, and A. J. Baca
Access: Materials Data Facility (https://doi.org/10.18126/2rpo-t1rn)

2. Thermoreflectance imaging of (ultra)wide band-gap devices with MoS2 enhance-
ment coatings
R. Hanus, S. V. Rangnekar, S. Mollah, K. Hussain, N. Hines, E. Heller, M. C. Her-
sam, A. Khan, and S. Graham
(https://doi.org/10.18126/emun-4lr3)

3. Ultrasensitive Molecular Sensors Based on Real-Time Impedance Spectroscopy
in Solution-Processed 2D Materials
D. Moore, A. Jawaid, R. Busch, M. Brothers, P. Look, A. Miesle, R. Rao, J. Lee,
L. Beagle, M. Motala, S. G. Wallace, J. R. Downing, A. Roy, C. Muratore, M. C.

https://patents.google.com/patent/US20210207255A1/en
https://doi.org/10.18126/2rpo-t1rn
https://doi.org/10.18126/emun-4lr3
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Hersam, R. Vaia, S. Kim, and N. R. Glavin
Access: Materials Data Facility (https://doi.org/10.18126/FIPX-OX7U)

4. Visualizing thermally activated memristive switching in percolating networks
of solution-processed 2D semiconductors
V. K. Sangwan, S. V. Rangnekar, J. Kang, J. Shen, H.-S. Lee, D. Lam, J. Shen, X.
Liu, A. C. M. de Moraes, L. Kuo, J. Gu, H. Wang, and M. C. Hersam
Access: Materials Data Facility (https://doi.org/10.18126/V4TM-NW3I)

5. Intrinsic carrier multiplication in layered Bi2O2Se avalanche photodiodes with
gain bandwidth product exceeding 1 GHz
V. K. Sangwan, J. Kang, D. Lam, J. T. Gish, S. A. Wells, J. Luxa, J. P. Male, G. J.
Snyder, Z. Sofer, and M. C. Hersam
Access: Materials Data Facility (https://doi.org/10.18126/NE02-LZPS)

6. Extracted Hall Data
A. Peyrera, J. Tran, M. Toriyama, R. Gurunathan, G.J. Snyder
Access: StarryData2

7. Heat Capacity of undoped PbTe
R. Hanus, M. Agne, A. Rettie, D. Y. Chung, M. Kanatzidis, P. Voorhees, G.J. Snyder
Access: Materials Data Facility (https://doi.org/110.18126/1obf-bje9)

8. Shear thickening and jamming of dense suspensions: The roll of friction
A. Singh; C. Ness; R. Seto; J.J. de Pablo; H.M. Jaeger
Access: Materials Data Facility (https://doi.org/10.18126/oqop-2zxk)

9. 2D Orthotropic Metamaterial Dataset
W. Chen
Access: Northwestern (https://ideal.mech.northwestern.edu/research/software/)

10. 2D Multi-Class Unit Cell Library
A. van Beek, D. Da, W. Chen
Access: Northwestern (https://ideal.mech.northwestern.edu/research/software/)

11. 2D Unit Cell Dataset
D. Da, W. Chen
Access: GitHub (https://github.com/Daicong-Da/2D-Orthotropic-Unit-Cell-Dataset.
git)

12. Heat Capacity of undoped PbTe
R. Hanus, M. Agne, A. Rettie, D. Y. Chung, M. Kanatzidis, P. Voorhees, G.J. Snyder
Access: Materials Data Facility (https://doi.org/110.18126/1obf-bje9)

13. Cross-property deep transfer learning framework for enhanced predictive an-
alytics on small materials data
V. Gupta, K. Choudhary, F. Tavazza, C. Campbell, W.-k. Liao, A. Choudhary, A.
Agrawal
Access: (https://doi.org/10.5281/zenodo.5533023)

14. Aluminum Bayesian weighted DFT MD Experiments Cp and H data
J. Gabriel, N. Paulson, T. Duong, C. Becker, F. Tavazza, U. Kattner, M. Stan
Access: Materials Data Facility (https://doi.org/10.18126/to2p-lmot)

16.6 CHiMaD Databases

Below are the four main CHiMaD databases and data resources funded through the efforts.

https://doi.org/10.18126/FIPX-OX7U
https://doi.org/10.18126/V4TM-NW3I
https://doi.org/10.18126/NE02-LZPS
https://doi.org/110.18126/1obf-bje9
https://doi.org/10.18126/oqop-2zxk
https://ideal.mech.northwestern.edu/research/software/
https://ideal.mech.northwestern.edu/research/software/
https://github.com/Daicong-Da/2D-Orthotropic-Unit-Cell-Dataset.git
https://github.com/Daicong-Da/2D-Orthotropic-Unit-Cell-Dataset.git
https://doi.org/110.18126/1obf-bje9
https://doi.org/10.5281/zenodo.5533023
https://doi.org/10.18126/to2p-lmot
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Open Quantum Materials Database
Authors: Wolverton Group, Northwestern
Distribution: Public
Access Link: http://oqmd.org
Description: The OQMD is a database of DFT calculated thermodynamic and structural
properties. In 2020, the Open Quantum Materials Database has broken a significant barrier
reaching quantum mechanical calculations of over 800,000 compounds.

Curation and Exploration of Reproducible Scientific Papers (Qresp)
Authors: Galli Group, University of Chicago
Distribution: Public
Access Link: http://qresp.org
Description: Qresp is an open source software to facilitate the organization, annotation
and exploration of data presented in scientific papers, addressing data accessibility and
reproducibility. In particular, in 2020, Qresp team improved two tools: (1) Curator: This
tool guides users in the creation of metadata for the data that accompanies a publishable
scientific work; improvements were made towards ease of use and automation of this
process; (2) Explorer: This tool provides a portal for the scientific community to access
datasets, explore workflows and download curated data, published in scientific papers;
improvements were made to be able to access it tool through a GUI, making it more
user-friendly.

Polymer Property Predictor and Database
Authors: Tchoua, R.; Hong, Z.; Audus, D.; Patel, S.; Ward, L.; Chard, K.; De Pablo, J.;
Foster, I.
Distribution: Public
Access Link: https://pppdb.uchicago.edu
Description: Polymer Property Predictor and Database (3PDB). 3PDB is a database of
curated polymer properties (e.g., Flory-Huggins parameters and Tg) extracted from the
literature using natural language processing (NLP) and hybrid human-NLP pipelines.
3PDB also includes a number of applications to allow users to generate phase diagrams
given input polymer properties and more.

Materials Data Facility
Authors: Blaiszik, B.; Chard, K.; Pruyne, J.; Ananthakrishnan, R.; Tuecke, S.; Foster, I.
Distribution: Public
Access Link: https://materialsdatafacility.org
Description: A simple way to publish, discover and access materials databases. More
information can be found in Chapter 14.

Other Databases
Below are the additional community databases built through collaborations of MDF teams
and using MDF services and framework.

Solvation energy database
Authors: Ward, Logan; Dandu, Naveen; Blaiszik, Ben; Narayanan, Badri; Assary, Rajeev
S.; Redfern, Paul C.; Foster, Ian; Curtiss, Larry A.

http://oqmd.org
http://qresp.org
https://pppdb.uchicago.edu
https://materialsdatafacility.org
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Distribution: Public
Access Link: https://doi.org/10.18126/jos5-wj65
Description: This database, hosted on Materials Data Facility, is a collection of >600,000
calculated molecular solvation energies in various solvents.

G4MP2-GDB9 Database
Authors: Narayanan, Badri; Redfern, Paul; Ward, Logan; Blaiszik, Ben; Foster, Ian;
Distribution: Public
Access Link: https://doi.org/10.18126/M23P9G
Description: This database is the largest collection of simulation of molecules at the
G4MP2 level of accuracy. This database was created in collaboration with JCESR, and is
hosted via MDF.

Virtual Excited State Reference for the Discovery of Electronic Materials Database (VERDE)
Authors: Biruk Abreha, Snigdha Agarwal, Ian Foster, Ben Blaiszik, Steven Lopez Distri-
bution: Public
Access Link: https://doi.org/10.18126/1m40-u86g and https://verdedb.org

Description: Virtual Excited State Reference for the Discovery of Electronic Materials
Database (VERDE). The VERDE Materials database is the first database to include down-
loadable excited-state structures (S0, S1, T1) and photophysical properties of molecules.
This database was created by the group of Steven Lopez at Northeastern University, and is
hosted via MDF.

https://doi.org/10.18126/jos5-wj65
https://doi.org/10.18126/M23P9G
https://doi.org/10.18126/1m40-u86g
https://verdedb.org
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