The Open Quantum Materials Database (OQMD): Features and Applications

(paradigms of materials discovery using prototypes and machine learning)

The Wolverton Research Group Department of Materials Science and Engineering Northwestern University

May 2, 2016

The OQMD: a HT DFT database

• A "high-throughput DFT" database of materials

A suite of computational materials science tools. http://www.oqmd.org

The Open QMD

Entire database accessible at <u>www.oqmd.org</u>

The OQMD is a database DFT calculated thermodynamic and structural properties. We are providing this online interface for convenient, small scale access; however

for more powerful utilization we recommend downloading the entire database and the API for interfacing with it, detailed in the link below.

You can...

Search for materials by composition, Create phase diagrams using database thermochemical data, Determine ground state compositions, Visualize crystal structures, or Download the entire database for your own use!

[[a convenient online interface for querying the database]]

• The entire database can be downloaded, along with *qmpy*!

The Open QMD

If you are so inclined, you can even tweet at it!

Tweet @TheOQMD to ask what is stable at a composition, or to get a simple phase diagram!

The OQMD was created in Chris Wolverton's group at Northwestern University.

Contact us by e-mail

If you are using any results from this website, please reference this work as shown here

What data does the OQMD contain?

Structure sources:

• The Inorganic Crystal Structure Database (ICSD)

[[40,000+ compounds with (currently) <40 atoms per unit cell]]

Decorations of known prototype crystal structures

B2 (CsCl) structure

 \rightarrow combinatorial replacement with all elements in the periodic table

[[400,000+ compounds from elemental, binary, ternary prototypes]] The number of compounds is constantly growing!

What properties are calculated?

• At a given composition:

What properties are calculated?

For a each compound in the database:

What properties are calculated?

• For a given chemical system, the convex hull (0 K phase diagram):

For example, Ti₂AlNi is predicted to decompose into TiAlNi₂ and Ti₃Al

qmpy: automating HT-DFT, thermodynamic analyses

- Symmetry analysis (interfaced with python-based spglib)
- Calculation of/plotting reaction voltages
- Chemical potentials to estimate synthesis conditions
- Multistep screening of prototypes for discovering materials, e.g.,
 - How many stable, tetragonal compounds of the form X₂YZ, with a bandgap between 0.5 eV and 1.5 eV, made of elements not heavier than Pb, and with lattice constant (*a*) close to that of Si, that have been synthesized experimentally are there in the OQMD?
 - Applications include searching for
 - 1. new cathode materials for batteries,
 - 2. new materials for thermochemical water splitting,
 - 3. new solar cell materials,
 - 4. new strengthening precipitates in alloys, and others...

An example of prototype screening: new strengthening precipitates in alloys!

Kirklin, S., Saal, J. E., Hegde, V. I., & Wolverton, C. "High-throughput computational search for strengthening precipitates in alloys", *Acta Materialia*, 102, 125-135.

Machine Learning & OQMD

Motivation: The Prototype Search

Common Method: Prototype Search

1. Select a crystal structure

12

- 2. Evaluate <u>all</u> possibilities with DFT
- 3. Select only stable ones

Challenge: Computational cost Possible Solution: Guide with ML

Route #1: Composition-Based Models

Goal: Find compositions of undiscovered phases **Method:**

1. Train ML, heuristic model on OQMD data

13

- 2. Rank unseen compounds based on stability
- 3. Predict crystal structures of best entries

Route #1: Predicted Compounds

O-Containing Ternaries

Brighter regions: More likely to have undiscovered compounds

In total: >4500 Predicted materials

Ref: Meredig et al. PRB. (2014) 094104

Route #1: Validated Predictions

Ref: Meredig et al. PRB. (2014) 094104

Route #2: Structure-Based Models

Goal: Predict composition *and* structure **Approach:**

- 1. Compute Voronoi tessellation
- 2. Assess atomic environments
- 3. Link to ΔH_f with ML

Route #2: Ranking Unseen Compounds

Test: Train on ICSD, rank prototypes by ΔH_f

17

Summary

- The OQMD: a high-throughput DFT database of materials
- Open access at <u>www.oqmd.org</u>; *qmpy* available on GitHub
- Discover new materials by screening prototypes and using ML
- ML tools for materials science: Magpie

(https://bitbucket.org/wolverton/magpie)

Materials property predictor

(http://oqmd.org/static/analytics/composition.html)

 \rightarrow platform for accelerated materials discovery and design!

For more details about OQMD:

J. E. Saal et al., *JOM* **65**, 1501-1509 (2013) [featured on JOM cover!]

S. Kirklin et al., *npj Computational Materials* **1**, 15010 (2015) [featured on the website!]

