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1082 atoms	in	the	observable	
universe



1060 – 10180 medium-size	
molecules



Long-term	Goal:	Mapping	chemical	space

What	is	the	nature
of	chemical	space	in	terms	of
functionality What	are	the	molecules

reachable	by	certain	synthetic
rules	and	mechanisms

Can	we	learn	to	automate	
quantum
chemistry	prediction
for	chemical	space



Molecular	screening	for	organic	materials

Quantum	Mechanics

How	good	is	this	molecule	as	
a	battery	material?

Machine	Learning



Molecules most likely
to be of interest

Computational 
cost

From	1060 to	106	to	10…

Initial	library

Computational
screening

Synthesis
and	testing



Shared Features
     Timescale is important
     Automated techniques
     Data-driven discovery
     Computational funnel

Inorganic
Materials

Organic
Materials

Organic
Pharmaceuticals

Size of search space

Level of approximation

Number of descriptors

Large

Medium

Small
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My	research	group’s	explorations	of	chemical	space

The	Harvard	Clean	
Energy	Project

Generating	renewable	
energy

Organic	flow	batteries
Storing	renewable	energy

Blue	Organic	LED
For	your	next	
gadget	or	TV

Origins	of	life
How	life	may	have	

come	about?



Project	chronology	and	screening	methodology	improvements

1.0 Harvard	Clean	
Energy	Project

2.0 Organic	flow
batteries

3.0 Organic	Light
Emitting	diodes

4.0 Harvard	Clean	
Energy	Project	

2006-

2013-

2014-

2014-

Distributed	high-
throughput

Experimental	
calibration

MolecularSpace
database+ +

Tight
experimental	
feedback	cycle

Stability	
screening

Synthesizability	
at	forefront+ +

Super-flexible
molecular	
builder

Machine	
learning	
screening

Infinite	libraries+ +

Thompson	
sampling

Several	experimental	
collaborations	at	once

Molecular	
crystal	ML	and	
prediction

+ +
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Harvard	Clean	Energy	Project:Organic solar	cells
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The	Harvard	Clean	Energy	Project The	Largest	quantum	chemistry	
screening	project	to	date

30,000+	CPU	years	have	led	to	more	than	35,000	high-performance	organic	photovoltaic	candidates.	

Collaborators:	Juan	Hindo (IBM)	Zhenan Bao (Stanford),	Johannes	Hachmann (Buffalo),	Alejandro	Briseño (UMass),	
Carlos	Amador	(UNAM),	and	…

Hachmann,	et.	Al,	J.	Phys.	Chem Lett.	(2011),	Energ.	Env.	Sci.	(2014)	



Scharber	M,	Mühlbacher	D,	Koppe	M,	et	al.,	Advanced	Materials	(2006)

Energy	Levels	and	Efficiency



10%
~35000	molecules
(1.5%	of	sample

space)

Energy	and	Environmental	Science,		7,	698	(2014)

Sifting	through	2.3	million	molecules 1.0

Ca
nd

id
at
es



14

The	Clean	Energy	Project	gets	an	artificial	intelligence	
boost!

Neural	Fingerprints

E.	O.	Pyzer-Knapp,	et	al.	Advanced	Functional	Materials		2015
E.	O.	Pyzer-Knapp,	et	al.	arXiV:1510.00388	2015

D.	Duvenaud,	arXiV:1509.09292	NIPS	2015

Machine	
learning

Calculate

Learn

Prioritize

Easy	to	synthesize	
libraries

Bayesian
calibration

Smart	Screening
Using	machine

learning

Collaborator:	Ryan	Adams	(Harvard)

 

 

upon the functions of the prior distribution depending on how likely 
they are to model the target function.  Thus the posterior distribution 
is sampled providing predictions (means), and also uncertainties for 
these predictions (standard deviations).  
 
In contrast to the earlier discussed parametric methods, a 
Gaussian process is non-parametric and thus very few 
assumptions need to be made about the target function.  
Additionally, the accuracy of a non-parametric method will only 
increase with the size of the prior (i.e. more data). 

Results and Discussion 
Gaussian processes were used to learn the deviation of 
computational results from their experimental analogues – i.e. 
to learn the function which calibrates one to the other.   
 
In order to assess the performance of the calibration in a 
quantitative manner, we utilize two measures of error; the 
Pearson R coefficient, and a weighted RMSD.  The Pearson R 
coefficient is a measure of the liner correlation between two 
variables, and is bounded at 0 (no correlation) and 1 (perfect 
correlation).  In this study, increases in the Pearson R coefficient 
when the calibration has been applied are strongly indicative of 
an improvement of the performance.  For the RMS Error, we 
include a weight to each point related to the uncertainty in the 
prediction returned by the Gaussian process. This weight is 
derived through normalizing the standard deviations of each 
prediction returned by the Gaussian process against the most 
certain point in the prediction. If these were not included, the  

Figure 2 The results of calibrating B3YP/def2-SVP quantum-chemical results for the 
Highest occupied molecular orbital  (HOMO), lowest unoccupied molecular orbital 
(LUMO) and optical gap to the experimental HOPV15 data set.  The uncertainty in the 
calibrated values is represented in the fill colour; the lighter the colour, the more 
uncertain the calibration. 

measures would assume that each point is equally certain, thus 
removing a key piece of information from the scoring function  
In this way, we do not punish a poor calibration if it is also 
known to be highly uncertain.  This was not done for the 
Pearson R coefficient, since bounding cases calculated on the 
distribution of points suggested that the un-weighted metric 
was representative.   
 
We first examine the performance of calibrating the electronic 
properties of these molecules; the HOMO, LUMO and gap.  A 
plot of predicted and experimental values for these properties 
is shown in Figure 2.  This plot shows the results when 
calibrating the B3LYP20,22 functional and def2-SVP basis set27 – 
the results for the other functionals can be seen in the ESI, but 
are broadly similar.  The hue of each point is related to the 
certainty of each prediction – the lighter the point, the more 
uncertain it is.  Points were calibrated on a leave-one-out basis, 
in which the prior was formed using all points except the point 
being calibrated, with the process being repeated until all points 
had been calibrated. 
 
It can be seen that whilst for these properties the quantum-
chemical method performs reasonably, there is significant 
improvement when the calibration is applied.  This is especially 
true for the calculation of the gap – a key property in the 
prediction of the performance of photovoltaic materials.  This 
may be due in part to the correction of a systematic error in 
assuming that the gap can be adequately described by the 
difference in energy levels of the LUMO and HOMO.  For this 
assumption to hold well, the ionization potential (IP) and 
electron affinity (EA) would have to be well described by these 
frontier orbitals, which is not necessarily the case in DFT47.  The 
success of this calibration does show, however, that it is not 
necessary to calculate the EA and IP explicitly to rectify this 
error.  This is of particular importance in the realm of high-
throughput virtual screening, where an increase in the 
necessary number of calculations per molecule can swiftly 
accumulate, resulting in a significant decrease in the size of the 
libraries which can be screened. 
 
Macroscopic properties, such as JSC, VOC, and PCE, present 
additional challenges to successful calibration.  Since these 
properties have additional intermolecular contributions, 
capturing these in molecular fingerprints may prove 
challenging.  Success in the prediction of lattice energy48 and 
solubility49 – properties both strongly related to intermolecular 
interactions – from the molecular structure does provide hope 
that these interactions can be somewhat captured, albeit in an 
implicit manner, in molecular fingerprints.  Additionally, 
experimental measurements of device performance are 
notoriously noisy, introducing increasing amounts of 

uncertainty into the model.  This method counters this through 
the application of some controlled noise to the data.  The 
amount of noise was optimized against the log marginal 
likelihood to provide the function which was most robust to the 
data it was trained on. 

4.0



Organic	Flow	Batteries

The	Harvard	Clean	
Energy	Project

Generating	renewable	
energy

Organic	flow	batteries
Storing	renewable	energy

Blue	Organic	LED
For	your	next	
gadget	or	TV

Chemical	networks
Origins	of	life

Organic	reactions
Chemical	

autoencoders



Organics	for	storing	clean	energy

Organic	flow	batteries

Huskinson,	et	al.,	Nature,	505,	2014,	p.	195

Suh,	et	al.,	Chem.	Sci.,	6,	2015,	p.	885

Collaborators:	Mike	Aziz	and	Roy	Gordon	(Harvard)Lin,	et	al.,	Science,	349,	2015,	p.	1529



Estimated	potential	range	of	organic	functional	group@	25oC
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Search	space	for	redox	potentials



1,4-BenzoQuinones

Choice	for	combinatorial	library:
1R	and	fully	substituted	cases	only

1. N(CH3)2
2. NH2
3. OCH3
4. OH
5. SH
6. CH3
7. SiH3
8. F
9. Cl
10. C2H3
11. CHO
12. COOCH3
13. CF3
14. CN
15. COOH
16. PO3H2
17. SO3H
18. NO2

1,2-BenzoQuinones

2.0
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Theoretical	calibration	of	quinone redox	potentials
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1,4-BQ

1,2-BQ

1,4-NQ

1,2-NQ

9,10-AQ

9,10-PQ

AQDS (GEN-1 molecule)

AQS (GEN-1 molecule)

1,5-DHAQDS (GEN-2 molecule)

DHAQDS (GEN-2 molecule) QSA (GEN-3 molecule)

QSA (GEN-3 molecule)

ASA (GEN-3 molecule)

ASA (GEN-3 molecule)

PDS (GEN-4 molecule)

ADS (GEN-4 molecujle)

NQPS

Quinones used for GEN-1,2 and 3 models
Added quinones for GEN-4 model

f=-0.42225X-0.169615 r2 = 0.988641

GEN-4 model
with inclusion of GEN-4 molecules (ADS and PDS) and NQPS

R2: 0.989
RMSD: 0.046 V



> 300 new	candidate	quinones predicted

S.	Er.,	C.	Suh,	M.	P.	Marshak,	A.	Aspuru-Guzik,	
Chemical	Science	(2015)



Our	metal-free	aqueous	flow	battery

Computational	screening	of	
10,000	quinonemolecules

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

E0 (V vs SHE)

Group: 6
Group: 6
Group: 5
Group: 3

1,2-BQ
1,4-BQ
1,2-NQ
1,4-NQ
1,5-NQ
1,7-NQ
2,6-NQ
2,3-NQ
9,10-AQ
1,4-AQ
1,2-AQ
1,10-AQ
2,9-AQ
1,7-AQ
2,6-AQ
2,3-AQ
1,5-AQ

V3+/V2+ VO2+/V3+ VO2
+/VO2+ Br2/Br

-b

Intense
design	cycle

Synthesize	molecules
Test	in	flow	battery

O

O

SO3HHO3S

Selected	molecule

2.0



Nature,	505,	2014,	p.	195

Theory-experiment	
collaboration

Alán Aspuru-Guzik
Chemistry

Michael	Aziz
Engineering

Roy	Gordon
Chemistry
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Molecular	Flow	Battery	Data	View

Blue:	Stable	molecule
Red:	Unstable	molecule

X	axis:	Redox	Potential
Y	axis:	Free	energy	of	Solvation

~	100,000	molecules	shown



Molecular	Flow	Battery	Data	View

Filtering	the	data	view



Molecular	Flow	Battery	Data	View

Baseball	card	view



Voting	Interface
Info	Cards

28

H
ig
h-
th
ro
ug
hp

ut
	m

at
er
ia
ls

di
sc
ov
er
y	
pr
oc
es
s	
an
d	
to
ol
s

Plotting
Data	Access	

Detailed	Tables
Bubble	Plot

Web	tools	and	critically	enable	partner	communication	and	successful	molecular	discovery

Moelcular Space	Shuttle:	advanced	molecular	discovery	platform
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Feedback	tool
Database-backed web system tracks:
• ~1,000,000 machine-generated molecules 
• ~1,500 (8000 including oxidation, decomposition and dissociation products)



:
Complex	quinone redox	pathways

Interactive data 
manipulation via 
web

Highly oxidizedHighly reduced

30



Additional	current-theory	work	1:	quinone	stability

9,866 couples

1st screening with 
Michael addition

2,290 couples

2nd screening:
Fewer than two R-groups

2,052 couples

3rd screening:
Fewer than two R-groups

and good solubility
(ΔG0

solv < -0.75 eV )

Screening procedures excluding potential Michael addition

• X-axis: Quinone redox potential (E0
1) / Y-axis: Stability (Khyd)

• Warmer colors represent higher density of molecules

22,364 couples



Additional	current-theory	work	2:	Second-oxidation	
quinones

762 couples

1st screening with
Michael addition

98 couples

2nd screening:
Fewer than two R-groups

84 couples

3rd screening:
Fewer than two R-groups

and good solubility
(ΔG0

solv < -0.75 eV )

Screening Procedures with consideration of Michael addition

8,252 couples



Molecular	baseball	cards	including	stability



Beyond	quinones

Sulfolobus archaebacteria

Pineda-Flores,	et	al.	J.	Phys.	Chem.	C	119	21800	(2015)



Long-lasting	blue	organic	LED

The	Harvard	Clean	
Energy	Project

Generating	renewable	
energy

Organic	flow	batteries
Storing	renewable	energy

Blue	Organic	LED
For	your	next	
gadget	or	TV

Origins	of	life
How	life	may	have	

come	about?



Harvard-MIT	collaboration

Ryan	Adams
Machine	Learning

Alán Aspuru-Guzik
High-throughput
quantum	chemistry

Tim	Swager
Stephen	Buchwald
Synthetic	Chemistry
Marc	Baldo
Device	Engineering
Troy	Van	Voorhis
Microscopic	theory

Harvard MIT

>450,000	molecules	screened	so	far!	 ~25	synthesized	and	tested



Speedy	screening



Machine	Learning
• Supervised	learning	algorithms

• Neural	networks	for	ultrafast	predictions	leveraging	thousands	of	data-points.
• Result	in	10x	speedup	by	discarding	poor	candidates

• Role	of	dimensionality
• Chemical	space	is	sparse but	libraries	are	dense.	Powerful	interpolation

• Explore-exploit	strategy

5/9/16 38
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Organic	LED	Screening

Synthetic	accessibility	voting	tool



Neural	Net	Training	Workflow



Data	mining	500,000	quantum	calculations

5/9/16 42

4CzIpn

R.	Gomez-Bombarelli,	et	al.	Submitted	(2015)



Batches

5/9/16 43

Batches
Selection	of	100-200	molecules	for	experimentalists	to	browse	in	a	contained	way.
Usually	explore	some	chemical	family,	using	ancestry	from	database.
Need	to	confirm	novelty	post	hoc:	sometimes	re-discover	known	molecules.



Sample	
Baseball card
Not the true 

structure 

High performance devices
Device 16.7% EQE !!

Synthesis	of	compounds

Molecule

Rafael	Gómez-Bombarelli,		Jorge	Aguilera-Iparaguirre,	Tim	Hirzel
Martin	BloodAdams,	Baldo,	Swager groups,	Samsung	IT

22.5%



Key	breakthroughs	in	efficiency:	Strength

Name S0 splitting	 T1 splitting	 S0 strength	 T1 strength	 EQE(%)

4CzIPN 0.124 0.101 0.063 0.049 20

Foxtrot1-21 0.015 0.031 0.003 0.000 20

Hotel1-38 0.017 0.046 0.008 0.012 7

Julie2-16-1 0.104 0.145 0.124 0.186 22

Lima17-36 0.179 0.187 0.257 0.240 17*

• A	small	gap	is	crucial	for	TADF	behavior

• We	need	also	need	a	big	fluorescence

• We	have	managed	to	control	both	for	great	overall	efficiency

R.	Gomez-Bombarelli,	et	al.	Submitted	(2015)



Screening	billions	of	molecules:
takes	the	driver’s	seat



To design something 
really well you have to 

get it. You have to 
really grok what it’s all 

about. It takes a 
passionate 

commitment to really 
thoroughly 
understand 

something. Chew it 
up, not quickly 
swallow it. Most 

people don’t take 
time to do that.



Aspuru-Guzik group http://aspuru.chem.harvard.edu
Twitter: A_Aspuru_Guzik

aspuru@chemistry.harvard.edu
Sponsors: DOE BES, ARPA-E, Samsung, NSF, ARO, ONR, 
AFOSR, Samsung, Sloan Foundation,  Camille and Henry 
Dreyfus Foundation, DTRA, DARPA


