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The Citrine Platform Architecture
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Shinier Paint Tougher Phones Lighter Vehicles Greener Suppliers

Machine Learning and Apps

Citrine and third parties can build powerful analytics for physical product companies

World’s Largest Physical Data Platform

Citrine is consolidating vast stores of physical knowledge

Data Extraction from Documents Data Streaming from Users
Citrine s extraction engine ingests quantitative Customers and a growing network of government
data from research papers, patents, data sheets and university labs push data to our platform
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The Industrial Materials Design Problem

CUSTOMER PROJECT: FORMULATION DEVELOPMENT
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N Citrine Informatics
Large-Scale Data and Al for All Materials

Thermoelectrics Aluminum Alloys
25k precomputed & 1.5k World’s largest ML-ready Al alloy database
user-requested materials Al-based models of properties
Users at NASA, LBNL, MIT
Steel Plus customer use cases: coatings, energy materials,

epitaxy, next-generation aerospace alloys, ...

Some steels benefit £ These steels suffer considerably
from the substitution! £ «
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time steel design e



| Citrine Informatics
Missing Link in the Materials Genome

Real-time, easy-to-use, web-based data infrastructure and predictive tools

A metallurgist can go to
citrination.com/alloys/predict In a few seconds, user receives Al output
and input composition and temper No programming, learning curve, or waiting

Request New Prediction

Request New Prediction

GENERATE PREDICTION
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Al-Based Models Are Very Accurate
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e Citrine Informatics

One organization that has made significant progress in
establishing a centralized data resource for materials
scientists is Citrine Informatics, a company that
specializes In applying data mining to materials
discovery and optimization.

— Ceder, Jain, Persson
APL Materials

http://dx.doi.org/10.1063/1.4944683




Statistics on Citrination.com

Search Data

Welcome to Citrination. The Search Data page allows you to find tabulated materials property data. These are data that users have
contributed or Citrine has automatically extracted from literature. M tribu

3.1m free data records

nnnnnnnnnnnnnn

Users from almost 2k
institutions worldwide

nnnnnnnnnnnnnn




Data Extraction: Text

Kinetics of premartensite to martensite transition and its implications on the origin of

pe memory alloy

Sanjay Singh', J. Bednarcik?, S. R. Barman’, C. Felser', and Dhananjai Pandey*

* Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, D-01187 Dresden,
Germany

?Photon Sciences, FS-PE, Deutsches Elcktronen Synchrotron (DESY), 22607 Hamburg,
Germany

*UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore, 452001, India.
#School of Materials Science and Technology, Indian Institute of Technology( Banaras Hindu

University) , Varanasi-221005, India.

Abstract

We present here results of temperature dependent high resolution synchrotron x-ray powder
diffraction study of sequence of phase transitions in NizMnGa. Our results show that the
incommensurate martensite phase results from the incommensurate premartensite phase, and not
from the austenite phase assumed in the adaptive phase model. The premartensite transforms to
the martensite phase through a first order phase transition with coexistence of the two phases in
a broad temperature interval (~40K), discontinuous change in-the unit cell volume as also in the
modulation wave vector across the transition temperature and considerable thermal hysteresis in

the characteristic transition temperatures. The temperature variation of the modulation wave

vector q shows smooth analytic behavior with no evidence for any devilish plateau corresponding

confirms the cubic structure in the Fm-3m space group (see Fig 3a). The cell parameter (a=

5.82445(1) A) obtained by us is in good agreement with those reported by earlier workers. [7, 11]

cell parameter a
5.82445(1) = NUMERICAL VALUE

angstrom

UNITS

MATERIALS PROPERTY




Extraction: Images & Tables
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Fig. 20. (100) pole figures for the simple scan pattem CM247LC with respect to the
() Z (build) direction and (b) ¥ (laser scan) direction.
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Fig. S2: Work function, HOMO and IP plots of PCBM film as function of in situ O
exposure time. WF shows a down shift and HOMO has an upward shift, but IP keeps constant.
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| Reference

Nishimori point in the £J model

0.111 £ 0.002 Transfer matrix [30]
0.114 =+ 0.003 Series expansion (17]
0.1128 £ 0.0008 Non-equilibrium [31]
0.1095 + 0.0005 Transfer matrix (18]
0.1094 + 0.0002 Transfer matrix [15]
0.1093 £ 0.0002 | Fermionic transfer matrix [19]
0.110028 Duality [21]
< 0.178203 Rigorous upper bound [32]
T = 0 critical point in the +.J model
~ 0.099 Series expansion [22]
0.105 £ 0.01 Matching algorithm [23]
0.095 < p. < 0.108 Matching algorithm [24]
8}83 ; 8&;5 Exact ground states [25]
0.115 Ground state enumeration [27]
0.1031 £ 0.0001 Exact ground states [12]
0.103 £ 0.001 Exact ground states (28]
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Extraction: Images & Tables

Underlying X,y data
Image containing data (actual extraction shown)
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Extraction in Production Today
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