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TOOLS

* Goal: Integrate computations and databases in
the materials design process

« To accomplish this new tools are needed:

— Theoretically Informed Coarse Graining and
Evolutionary Design

— Microstructure Development

— Rapid Throughput and High Resolution
Characterization

— Integration — Accelerated Insertion of Materials
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Microstructure Development

* Objective: Model the microstructural evolution of
multiphase multicomponent materials
* Phase field methods
— Easy to add new physics
— Allows for topological singularities
— No need to track phase boundaries explicitly
* Level Set
— Allows for topological singularities
— No need to track phase boundaries explicitly
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Phase Field

Develop a community code
One of the closest is FiPy

Example: nanowire growth,
captures fluid dynamics
capillarity and diffusion

Goals:

— Allow for the incorporation of
CALPHAD databases

— Port to leadership class
machines (ANL)

— Preconditioners/PETSc (ANL)

Schwalbach, Davis, Voorhees, \guéMeler



Level Set

« Many of the advantages of the
phase field method

* Does not employ a diffuse
iInterface

 May be easier to integrate with
CALPHAD databases

Shi, Liu and Chopp |~ i
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Rapid Throughput and
High Resolution Characterization

Goal: provide the data to populate the databases needed
for the use-case groups

This can be done using calculations and experiments

Calculations: Wolverton group’s Open Quantum
Materials Database

— Over 300,000 compounds, and counting

Experiments:

— Co-sputtering using three or more pure sources

— Diffusion between blocks of two or more pure materials
— Challenge: methods for rapid characterization
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Vision of Integrated Analysis Loop: towards a forward model
GISAXS data GISAXS from BCP
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Experimental Results Compared to Simulations
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Leveraged Resources for 3D Characterization of DSA at ANL
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Integration, Accelerated Insertion of Materials

Accelerated Insertion « Materials
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Computational Materials Qualification Acceleration

TRL Milestones Material Development Milestones
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