Adhesive strength of interfaces between bcc and fcc Fe and transition metal carbides: effect of misfit dislocations on structure and bonding

Oleg Y. Kontsevoi¹, Arthur J. Freeman^{1,2}, and Gregory B. Olson²

Northwestern University, Evanston, IL, USA

¹Department of Physics & Astronomy

²Department Materials Science and Engineering

30th Annual SRG Meeting, March 24-25, 2014

NORTHWESTERN UNIVERSITY

Motivation

- Dispersed inclusions of carbides MC (M is Ti, V, Nb, Mo) provide superior fracture toughness and increased strength for ferritic steels
- *M*C precipitates in austenitic stainless steels are formed with Ti, V, Nb, Zr additions, resulting in improved:
 - Strength
 - Creep resistance
 - Intergranular corrosion resistance

- Investigate interfacial adhesion of the ferrite and austenite phases of Fe and transition metal carbides *M*C, where *M* is (Ti, V, Nb, Mo)
- Understand the interface adhesion at the atomic and electronic levels
- Evaluate the effect of misfit dislocations on structure, bonding and adhesive strength of interfaces

Methodology

- First-principles calculations based on density functional theory (DFT)
- Use of highly precise full-potential linearized augmented plane wave (FLAPW) method ^[1]

[1] E.Wimmer, H.Krakauer, M.Weinert, and A.J.Freeman, PRB 24, 864 (1981) : Film method H.J.F. Jansen and A.J.Freeman, PRB 30, 561 (1984) : Bulk method

Difficulties in modeling austenitic steel/MC interfaces

- Significant and varying content of alloying additions to Fe, most notably Cr (18%) and N (10%)
- Large lattice misfit between fcc Fe and MC (15-20%)
- Non-stoichiometry in MC
- Substitution of *M* with Cr
- More complex precipitate phases possible (Z-phase, M₂₃C₆, σ-phase)

bcc Fe/MC lattice misfit

Lattice constants and misfit δ :

$$\delta = \frac{a_{MC} - \sqrt{a_{Fe}}}{\frac{1}{2}(a_{MC} + \sqrt{a_{Fe}})}$$

	bcc Fe	TiC	VC	NbC	МоС
Lattice constants (Å)	2.86	4.32	4.18	4.43	4.28
Misfit (%)	_	6.4	3.3	8.7	5.6

• Small lattice misfit suggests that coherent interfaces could be possible

Adhesion of coherent bcc Fe/MC interfaces (M = Ti, V, Nb, Mo)

Coherent patches on "top" facet of precipitate

F.G Wei, T. Hara and K. Tsuzaki, Philos. Mag. 84, 1735 (2004)

fcc Fe/MC interface: lattice misfit

$$\delta = \frac{a_{MC} - a_{Fe}}{\frac{1}{2}(a_{MC} + a_{Fe})}$$

	fcc Fe	TiC	VC	NbC	МоС
Lattice constants (Å)	3.42	4.32	4.18	4.43	4.28
Misfit (%)	—	21.3	18.0	23.7	20.3

• Large lattice misfit – no coherent interfaces possible

Interface structure model

- Coherent interface model
- Calculations using superlattice approach

Interface structure models

bcc Fe/TiC

fcc Fe/TiC

- Superlattice model
- Baker-Nutting orientation:
 - (001)_{MC} // (001)_{bcc} [100]_{MC} // [110]_{bcc} (001)_{MC} // (001)_{fcc} [100]_{MC} // [100]_{fcc}
- Optimized atomic positions
- Optimized c length
- Site-preference is fully considered

bcc-fcc relation: Bain path

 fcc structure may collapse into bcc structure upon tetragonal compression

Enegy difference (eV/atom)

Magnetism of fcc Fe

Complex magnetism of fcc Fe with multiple competing magnetic structures

Fe/MC work of separation

Calculated work of separation (J/m²)

	Fe/TiC	Fe/VC	Fe/NbC	Fe/MoC
bcc Fe	3.60	3.78	3.69	3.58
fcc Fe	3.63	3.81	3.78	3.80

- Very high work of separation for all cubic carbide-bcc Fe interfaces suggests strong interfacial adhesion
- Work of separation is largest for Fe/VC interface
- Very high work of separation for all cubic carbide-fcc Fe interfaces
- Work of separation is similar to carbide-bcc Fe interfaces similar interfacial bonding?

Electronic origins of strong interface adhesion: charge density

• Strong covalent bonding

- Short bonding distance
- Fe-C in bcc Fe/TiC: 1.89 Å
- Fe-C in fcc Fe/TiC: 1.90 Å
 - compare Fe₃C: 1.94 Å
- Short Fe-C bond length and charge accumulation indicates strong interfacs bonding of covalent character
- Almost indentical character of interfacial bonding

Role of magnetism

 Account for magnetism is necessary for accurate description of interface adhesion

Cleavage of semicoherent interface

Adhesion energy: $E_{ad} = E_{ad}^{(0)} - E_{dis};$ $E_{ad}^{(0)}$ - ideal work of separationMisfit dislocation
energy: $E_{dis} = E_{dis}^{(st)} + E_{st};$ E_{st} - strain energy

Mistit dislocations at coherent interfaces

Combined *ab-initio*+PeierIs-Nabarro model approach for misfit dislocations

 $E(J/m^2)$

0.0

1.0

0.5 0

1.0 0.0

1. Ab-initio GSF calculations $\Phi(u)$ - generalized stacking fault (GSF) energetics

2. Modified 2D-Peierls Nabarro model

 $E_{tot}[\vec{u}(x))] = E_{misf}[\vec{u}(x))] + E_{elast}[\vec{u}(x))]$

3. Solution of minimized PN functional

 $E_{tot}[\vec{u}(x))] = E_{tot}(\omega_{\alpha}, d_{\alpha}, l); \quad \{\omega_{\alpha}, d_{\alpha}, l\} \text{ - dislocation geometry} \\ p = \delta/a \quad \text{- dislocation spacing}$

N.I. Medvedeva, Yu.N. Gornostyrev, O.Yu. Kontsevoi, and A.J. Freeman, Acta Mater. 58, 927 (2004)

bcc Fe/TiC: misfit dislocation energy and structure

- Interface strength is decreased by 0.70 J/m² (~20%)
- Misfit dislocations are mobile, have a wide core (~ 4 a_{Fe}) and very low Peierls energy
- Crack activation on the interface will not occur

- Similar barriers to shear at fcc Fe/TiC and bcc Fe/TiC interfaces
- Misfit dislocation energy difference should originate from elastic contribution to Peierls energy

fcc Fe/TiC: misfit dislocation energy and structure

Dislocation structure

- Dense array of narrow-core (~ 1.5 a_{Fe}) misfit dislocations forming at the interface
- Relatively low mobility and high Peierls energy
- fcc Fe/TiC Interface strength is decreased by 1.4 J/m² (~40%)

bcc Fe/TiC semicoherent interface model

- •2*a*_{TiC}/3*a*_{Fe} matching in [100]
- 1a_{TiC}/1a_{Fe} matching
 in [001]
- •96 atoms

Model contains one misfit dislocation per unit cell

fcc Fe/MC semicoherent interface model

- 5 unit cells of fcc Fe matched with 4 unit cells of MC (M = Ti, V, Nb, Mo)
- Lattice misfit is eliminated or reduced dramatically
- One misfit dislocation in each unit
- Large unit cells:
 - 290 atoms if semi-coherent in [100] and [010]
 - 58 atoms if semi-coherent in [100] and coherent in [010]

fcc Fe/TiC semicoherent interface

Non-relaxed

Relaxed

 Relaxation at the interface results in formation of Fe-C bonds across the interface

Charge density for fcc Fe/TiC semicoherent interface

- Strong covalent bonding of Fe and C atoms at the interface
- Fe-C distance is 1.98 Å, compared with 1.90 Å for coherent model
- C atom at the end of extra plane moves to form bonds with 2 Fe atoms simultaneously
- In-plane relaxation rearrange Fe atoms to minimize the effect of the extra plane on the interface energetics by forming Fe-C bonds

Conclusions

- Strong interface adhesion is found for coherent (bcc, fcc)Fe/MC (M=Ti, V, Nb, Mo) interfaces, with separation energy 3.58-3.80 J/m²
- High adhesion energy is due to formation of Fe-C bonding across the interface with covalent character
- Misfit dislocations reduce the separation energy by 20% (bcc Fe/MC) to 40% (fcc Fe/MC)
- Separation energy reduction correlates with lattice misfit
- Semicoherent interface retain adhesion and bonding due to relaxation leading to formation of new Fe-C bonds at the interface