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Motivation and Background

Microstructure

Macrostructure

Un-notched Notched
(to approximate

device)
)
1 Porter, Easterling,2004
2 Toro et. al, J. Mater. Eng. Perform 2009
3 Pelton, et al J. Mech. Behav. Biomed Mater., Ny
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Fatigue in Biomedical Stents

|

Specimens

Stents
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Notch Effects
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Neuber’s Equation

Notched Neuber’s Equation
1+ = JA7
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. Non-linear Material
Log Life N dependent

Non-linear material dependent behavior
indicates microstructural dependence

Schijve, Fatigue of Structures and Materials, 2001
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Computational Fatigue

* Fatemi-Socie in 1988 proposed a fatigue indicating

Plastic strain increment Ay?
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Torsion .
" Axial .

FIP

Log Life N

Fatemi and Socie Fatigue & Fracture of Engineering Materials & Structures, 1988

parameter (FIP) to account for discrepancies in e-N
curves due to loading condition
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B From FEM/Experiment
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Fatigue Regimes

* Total fatigue life is broken into three regimes!
Nrotar = Nine. + Nysc + Nic

* Incubation (N, ): nucleation and growth of crack
beyond influence of microstructural notch?

— Characterized by microscale plastic strain and nonlocal
damage parameters

* Microstrucurally Small Cracks (Nyssc) : growth of crack
from incubation size a;, such that a; < a < kGS,
where k is (1-3) and GS the lengthscale of a grain or
other prominent microstructural features?

— Characterized by elasto-plastic fracture mechanics

* Long Cracks (N, ) : macroscopic crack growth?
— Characterized by linear elastic fracture mechanics

This slide was not originally presented on 3/4/2014 1 Horstemeyer, ICME for Metals, 2012

03/24/2014 Steel Research Group 30™ Annual Meeting



Treatment of Fatigue Regimes

e Total fatigue life is broken into three regimes
Nrotar = Nme. + Nusc + Nic

* The following work will address only N;,,. as it accounts for a large
% of fatigue life for many alloys

* The ABC theory will be able to model the Ny s and N, . regimes by:
— Studying several (5-10) initial cycles and determining Ny,,. from a FIP
— Using this as an initial state for explicit modeling of Ny;5c and N

— Ny sc region could be considered 1 element (kGS = 1 element) and
growth modeled with methods such as XFEM!

— Once crack grows beyond 1 element N, can be modeled based on
basic damage models, strain gradients in ABC will aide in
regularization (reducing mesh sensitivity) and localization

1 Menouillard, Thomas, et al. "Time dependent crack tip enrichment for dynamic crack propagation." Int. J. of Frac.162.1-2 (2010): 33-49.

This slide was not originally presented on 3/4/2014
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Direct Numerical Simulation of FIP
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Zhang et al. Eng. Fract,Mech, 2009
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Fatigue Theory Summary

* Linear Elastic Theory
— Overly conservative
— No material information
— No microscale information

Linear

Elastic Neuber

FIP
* Neuber’s Theory

— Require extra material tests
— Only works for simple notches
— No microscale information Log Life N

Stress, S
ﬁ\

e Fatemi-Soci (FIP) Theory

— No macroscale notch information
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Archetype-Blending Continuum (ABC) Theory

e Combines generalized continuum
mechanics and constitutive
modeling

* Degrees of freedom represent
partitions of microstructure

* Each degree of freedom is similar to
assembly of Eshelby problems in
micromechanics but strain are
determined by solving equations of

motions DOF1
e Virtual Power Interaction

Intrinsic stress relative stress relative strain strain gradjent

Voo ~ \’ v
SP;; = j (6:6L + 60 i SLV + s™: SA™ + ss™ : A"V )dQ
Q

Elkhordary et al., Comput. Methods Appl. Mech. Engrg., 2013
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Notched Fatigue and ABC

* Non-linear reduction in S-N curve is :

— Material dependent 9
. . )
— A function on macroscale strain 1
gradients?! =
: . : N
— A function of microscale strain
gradients?!
Log Life N
ABC
A~ matrix
N B . interphase
g - inclusion
. TN L7 Implicit
K Mlcro Kt IMcrostructure
|
A 8Py = f (0:6L + 00 : SLV + s™: SA™ + ss™ : 5A™V)dQ
1 McDowell, Mat. Sci. Eng. A, 2007 Q
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Implicit Microstructure

Interphase Inclusions

/,f,-‘l\\

r*‘ e TR Matrix: Young’s Modulus: 200 GPa
Matrix Yield Strength  : 250 MPa
Interphase: Young’s Modulus: 200 GPa
: interphase Yield Strength  : 250 MPa
matrix
Inclusion: Young’s Modulus: 2000 GPa
Linear Elastic
inclusion
) @
Degree-of-Freedom 1 ¢! Matrix g —
Degree-of-Freedom 2 €?  Interphase I |

€ (£2) Inclusion

€ = mapping of strain using Eshelby’s solution
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Microplasticity

2
7

equivalent plastic strain
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Response of Notched Sample

Linear Elastic Equivalent Plastic
Macro Stress Interphase Strain

Stress w/o notch is 300 MPa,
K; = 2

15 149 283 417 596 0O 04 08 14 138
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Notched Sample Fatigue Prediction
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Summary and Conclusions

 ABC uses a multiscale multicomponent
formulation rooted in micromechanics to
predict material behavior

* ABC can predicted notch sensitivity of notched
devices, giving information of geometric
effects and statistics

* Goal is that device designers can optimize
microstructure and geometry concurrently
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Questions / Comments
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Backup
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Constitutive Modeling

Simple Partition Realistic Partition

1 Partition 1 = matrix
Oxide Partition 2 = matrix
/‘/ | \\3 carbide
*( o 250 " Partition 3 = matrix
2 oxide
_Carbide_
2—' 1 5 Partition 4 = matrix
oxide
Archetype A = matrix Partition 1 = matrix Archetype A = matrix interphase
Archetype B = Inclusion Partition 2 = matrix Archetype B = carbide
inclusion

Archetype C = oxide

Archetype D = damaged matrix/oxide interphase

Toro et. al, J. Mater. Eng. Perform Volume 18(5-6) August 2009

03/24/2014 Steel Research Group 30™ Annual Meeting

22



Eshelby’s Problem

ArbitrarykProblem Eshelby’s ~ Then the inclusion strain is
_______ e Pr‘(—)P{em g g1 = {I +SLy'(Ly — Lo)}€°
s

| This maps the applied strain to the
| @ @ i inclusion strain based on the material

A ) /" properties of the matrix and inclusion and
S Eshelby’s tensor

Homogenization with Eigenstrain &* For an arbitrary complex problem a region
. . around the inclusions (r) can be considered
Li(€° + S¢*) = Lo(e® + Se* — &%) ) . (.) = .
with a material properties L and applied
Where Ly and Ly are stiffness tensors, §, strain &, then the inclusion strain is

Eshelby’s tensor and €° the applied strain _ -

g ={U+S, LT Y(L.—1L )}z

Solving for Eigenstrain €* gives : R _
Different assumptions for L and € yield many

g = —[(Ly — Lo)S + L)™' (Ly — Lg)&° popular micromechanics models

If the inclusion strain &4 is given by: e Dilute Model :IL = Ly;g=¢
g, = &%+ S¢* * Mori-Tanaka :Z. = L_O;f: = _?:0
o Self Consistent: L = L;€=¢
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