M^cCormick

Northwestern Engineering

Archetype-Blending Multiscale Continuum Method

John A. Moore Professor Wing Kam Liu Northwestern University Mechanical Engineering

Outline

- Background and Motivation
- Archetype-Blending Continuum (ABC) Theory
- Computational Fatigue
- ABC microplasticity simulation
- ABC fatigue simulations
- Conclusions

Motivation and Background

Un-notched

Microstructure

notch

Macrostructure

1 Porter, Easterling, 2004

03/24/2014

2 Toro et. al, J. Mater. Eng. Perform 2009

3 Pelton, et al J. Mech. Behav. Biomed Mater., 🎗

Steel Research Group 30th Annual Meeting

3

Fatigue in Biomedical Stents

Duerig, T., A. Pelton, and D. Stöckel, An overview of nitinol medical applications. Materials Science and Engineering: A, 1999.

Notch Effects

Neuber's Equation

Notched

Neuber's Equation

indicates microstructural dependence

Schijve, Fatigue of Structures and Materials, 2001

Computational Fatigue

 Fatemi-Socie in 1988 proposed a fatigue indicating parameter (FIP) to account for discrepancies in ε-N curves due to loading condition

03/24/2014

Fatigue Regimes

- Total fatigue life is broken into three regimes¹ $N_{Total} = N_{Inc.} + N_{MSC} + N_{LC}$
- Incubation (N_{Inc.}): nucleation and growth of crack beyond influence of microstructural notch¹
 - Characterized by microscale plastic strain and nonlocal damage parameters
- Microstrucurally Small Cracks (N_{MSC}) : growth of crack from incubation size a_i , such that $a_i < a < k$ GS, where k is (1-3) and GS the lengthscale of a grain or other prominent microstructural features¹
 - Characterized by elasto-plastic fracture mechanics
- Long Cracks (N_{LC}) : macroscopic crack growth¹
 - Characterized by linear elastic fracture mechanics

This slide was not originally presented on 3/4/2014

1 Horstemeyer, ICME for Metals, 2012

Treatment of Fatigue Regimes

- Total fatigue life is broken into three regimes $N_{Total} = N_{Inc.} + N_{MSC} + N_{LC}$
- The following work will address only N_{Inc.} as it accounts for a large % of fatigue life for many alloys
- The ABC theory will be able to model the N_{MSC} and N_{LC} regimes by:
 - Studying several (5-10) initial cycles and determining $N_{Inc.}$ from a FIP
 - Using this as an initial state for explicit modeling of N_{MSC} and N_{LC}
 - N_{MSC} region could be considered 1 element (kGS = 1 element) and growth modeled with methods such as XFEM¹
 - Once crack grows beyond 1 element N_{LC} can be modeled based on basic damage models, strain gradients in ABC will aide in regularization (reducing mesh sensitivity) and localization

1 Menouillard, Thomas, et al. "Time dependent crack tip enrichment for dynamic crack propagation." Int. J. of Frac. 162.1-2 (2010): 33-49.

This slide was not originally presented on 3/4/2014

Direct Numerical Simulation of FIP

Zhang et al. Eng. Fract, Mech, 2009

Fatigue Theory Summary

- Linear Elastic Theory
 - Overly conservative
 - No material information
 - No microscale information
- Neuber's Theory
 - Require extra material tests
 - Only works for simple notches
 - No microscale information
- Fatemi-Soci (FIP) Theory
 - No macroscale notch information

Log Life N

Archetype-Blending Continuum (ABC) Theory

- Combines generalized continuum mechanics and constitutive modeling
- Degrees of freedom represent partitions of microstructure
- Each degree of freedom is similar to assembly of Eshelby problems in micromechanics but strain are determined by solving equations of motions
- Virtual Power

Interaction

DOF₂

 L_r

DOF*n*

Notched Fatigue and ABC

- Non-linear reduction in S-N curve is :
 - Material dependent
 - A function on macroscale strain gradients¹
 - A function of microscale strain gradients¹

Micro K_t

03/24/2014

 $\overline{}$

 K_t

 $\delta P_{int} =$

Models

10% volume fraction

Implicit Microstructure

Microplasticity

Response of Notched Sample

Linear Elastic Macro Stress

Stress w/o notch is 300 MPa, $K_t \approx 2$

Equivalent Plastic Interphase Strain

Notched Sample Fatigue Prediction

Summary and Conclusions

- ABC uses a multiscale multicomponent formulation rooted in micromechanics to predict material behavior
- ABC can predicted notch sensitivity of notched devices, giving information of geometric effects and statistics
- Goal is that device designers can optimize microstructure and geometry concurrently

Questions / Comments

Steel Research Group 30th Annual Meeting

Backup

Constitutive Modeling

Simple Partition

Realistic Partition

Archetype A = matrix Archetype B = Inclusion Partition 1 = matrix Partition 2 = matrix inclusion

Archetype A = matrix Archetype B = carbide Archetype C = oxide

Archetype D = damaged matrix/oxide interphase

Toro et. al, J. Mater. Eng. Perform Volume 18(5–6) August 2009

Eshelby's Problem

Homogenization with Eigenstrain $arepsilon^*$

$$L_1(\varepsilon^0 + S\varepsilon^*) = L_0(\varepsilon^0 + S\varepsilon^* - \varepsilon^*)$$

Where L_0 and L_1 are stiffness tensors, S , Eshelby's tensor and $arepsilon^0$ the applied strain

Solving for Eigenstrain ε^* gives :

$$\boldsymbol{\varepsilon}^* = -[(L_1 - L_0)\boldsymbol{S} + L_0)]^{-1}(L_1 - L_0)\boldsymbol{\varepsilon}^0$$

If the inclusion strain ε_1 is given by:

$$\varepsilon_1 = \varepsilon^0 + S\varepsilon^*$$

Then the inclusion strain is

$$\varepsilon_1 = \{I + SL_0^{-1}(L_1 - L_0)\}\varepsilon^0$$

This maps the applied strain to the inclusion strain based on the material properties of the matrix and inclusion and Eshelby's tensor

For an arbitrary complex problem a region around the inclusions (r) can be considered with a material properties \hat{L} and applied strain $\hat{\varepsilon}$, then the inclusion strain is

$$\varepsilon_r = \{I + S_r \, \widehat{L}^{-1} (L_r - \widehat{L} \,)\} \widehat{\varepsilon}$$

Different assumptions for \hat{L} and $\hat{\epsilon}$ yield many popular micromechanics models

- Dilute Model $: \hat{L} = L_0; \hat{\varepsilon} = \overline{\varepsilon}$
- Mori-Tanaka : $\hat{L} = L_0$; $\hat{\epsilon} = \bar{\epsilon}_0$
- Self Consistent : $\hat{L} = \overline{L}$; $\hat{\varepsilon} = \overline{\varepsilon}$