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Agenda

Background — Materials Design
Application and Problem Definition

A computational approach to high-strength SCC resistant Al
design (Alurium™ HSCR)

Alurium™ HSCR alloy properties
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QuesTek’s ICME approach to design high-strength,

SCC-resistant aluminum

Develop and apply Integrated Computational Materials Engineering (ICME) design
models to design a high-strength, SCC-resistant aerospace aluminum alloy

Integrated:

« Systems-based approach that considers all
aspects of corrosion resistance, relevant
microstructure, and processing steps

Computational:

« Mechanistic processing-structure and
structure-property models that can be used
in alloy design

« Thermodynamic models

Materials:
 High-strength aluminum
Engineering

 Solving specific problems that are relevant
to aerospace applications
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QuesTek’s ICME approach to design high-strength,
SCC-resistant aluminum
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Multicomponent Thermodynamics

- Equilibrium and meta-stable phase

relations and thermodynamic
properties

Multicomponent Kinetics
- Multicomponent diffusion

(I\/Iaterial Design (Structure) Tools\
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fProcess-Structure

Solidification modeling
Homogenization modeling
Hot working simulations

Modeling response to heat treatment
(development of 2"-phase
precipitates and constituents
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Quench sensitivity modeling
Strength models
SCC-resistance modeling

Modeling response to heat treatment
(development of 2"d-phase
precipitates and constituents) /

Develop multi-scale, mechanistic models to describe the interaction of relevant
microstructural features with properties and processing steps

Integrate the models into a consistent software platform for computational alloy

design

Apply the models in conjunction with thermodynamic tools and models for

processing and relevant aluminum alloy properties to design a high-strength,

SCC-resistant aluminum alloy for aerospace applications
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APPLICATION AND PROBLEM
DEFINITION
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Problem Definition — Stress Corrosion Cracking (SCC)

Light-weight, high-strength Al alloys are widely used for structural components of
aircraft and ships

High-strength Al alloys (such as 7050) are highly susceptible to stress corrosion
cracking and general corrosion

— Repair and maintenance of corroded components a major cost driver

— Heavy anodized coatings necessary for corrosion protection result in significant fatigue strength debit

New high-strength Al alloys are needed with microstructures optimized for SCC
resistance

— Allows for the reduction or elimination of heavy anodized coatings, reduced fatigue debit and greater
structural integrity
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Application of Interest — Aircraft Wing Structures

ess cnrro&anﬁzack(s)

SCC failure in 7xxx alloy aircraft structure

Aircraft wing structural components

— Currently made out of high-strength aluminum (such as 7050) and titanium

— Uncoated high-strength Al alloys are susceptible to various forms of localized
corrosion in chloride environments, such as Stress Corrosion Cracking (SCQ),
pitting, crevice, intergranular corrosion, and exfoliation corrosion
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Alloy Design

Critical Design Factors include:
1. Tensile Strength

— Optimize strengthening precipitate
fractions within 7xxx design space

— Minimize quench sensitivity Coaling
2. SCC resistance and toughness

PROCESSING STRUCTURE

Coating
* Non-anodize coating
schemes

Finish Matrix

. H machining * Composition
— Grain boundary chemistry e
. .. . . ival C
— Refinement/elimination of grain boundary Egi'i?eince °
i Heat treat:
part|C|eS -solution treat

temper Strengthening
Precipitates: 1", L1,

. Vf.‘ <R= -

* Electrochemical
equivalence to matrix

— Minimize OCP difference between matrix
and precipitate phases

— Optimal grain pinning — inhibit recrystallization Forging

3. Fatigue

— Maximize general corrosion resistance to
minimize need for coating (reduced coating
. - Micro & macro
tthkﬂESS) segregation

4. Manufacturability R —

. . Melti
—  Thermal processing windows -
(homogenization, solution treatment) + G. B. precipitates
* Texture / special

— Conventional alloying additions (cost) boundaries

Primary particles
» Constituents ~1 um
Homogenize (Fe, Mn, efc.)
* Dispersoids ~0.1 pm
T (L13)
Solidification ‘ « Electrochemical

equivalence to matrix

Grain Structure
* G.B. chemistry
+ Grain Size
+ % recrystallization
* PFZ

PROPERTIES

Minimal corrosion
pitting susceptibility

RT Strength:
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UTS = 83 ksi
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Fracture Toughpess
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+ Fatigue crack
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growth rate
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Alloy Design - Stress Corrosion Cracking

Grain-boundary segregation
Certain alloying additions embrittle grain boundaries, others promote cohesion

DFT ab-initio calculations inform grain boundary segregation energy and embrittling potency of
various alloying elements

Design consideration - Accurate SCC lifetime predictions based on thermodynamic and DFT
calculations of grain boundary character
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Alloy Design - Stress Corrosion Cracking

Corrosion potential difference between matrix and Effect of chemistry on matrix corrosion potential
precipitates a major driver of pitting, SCC NI
— Corrosion potential of different phases predicted as a M
. . . . . . -8 7 Cu
function of chemistry, integrated into computational design g
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Alloy Design — Quench Sensitivity

 PrecipiCalc extension to predict precipitation during cooling from solution
treatment in 7xxx series Al

« Combine with strength models to predict critical cooling rate to avoid strength loss
due to quench sensitivity

 Integrated with thermodynamic/mobility databases to predict quench sensitivity as
a function of composition
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Isothermal TTT curve predictions of 1%
strength loss in various 7xxx series alloys
and two QuesTek concept alloys
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Alloy Design

e Thermodynamic calculations inform phase stability as a function of composition for
tailored microstructures and control of processing windows

 Solidification and homogenization modeling to identify optimal processing conditions
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Alloy Production

Full-scale production of Alurium HSCR
— Melting at Universal Alloy Corp, Anaheim, CA at 2000 Ib scale

— Homogenization, extrusion to multiple product forms following
production path relevant to aircraft structural components

— Solution treated and aged to T6, T7x conditions
— Detailed characterization in progress
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Characterization — Tensile testing

Minimum Longitudinal Tensile Properties
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7050-T74 7085-T74% 7055-T74  Alurium HSCR-
1-T74

F¥F085-Flate, all others extrusions, aoll £0.5" section

Improved strength and ductility over incumbent 7xxx alloys in equivalent
temper condition

Data development in a range of temper conditions in progress
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Characterization — Strength vs SCC resistance
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alloy achieves a
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resistance that is
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Data development on various heat treatment conditions in progress
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Alloy Characterization

« Complete - Tensile testing, SCC threshold stress
testing (ASTM G47)

e In process — Additional G47 testing, fracture
toughness (K., Kscc), fatigue crack growth, axial
fatigue, ASTM B117 salt fog and exfoliation
corrosion testing, coating evaluations
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Summary

* QuesTek’s computationally designed Alurium HSCR
alloy achieves a combination of strength and SCC
resistance not achieved by commercial alloys,
Including:

— 15-25% higher strength than 7050-T74 in the longitudinal
direction

— G47 threshold stress > 75% of longitudinal yvield strenqgth
in T73 condition
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