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Experimental Results - Fe-0.32C-1.42Mn-1.56Si 
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Why TRIP Steel 

• Transformation Induced Plasticity 

• Martensitic transformation during plastic 
deformation contributes to overall ductility 

How to make TRIP steels 

• Select chemical composition properly 

• Apply two-step heat treatment to manage 
the carbon content in austenite 

Target 

• Maximize TRIP effect of the low alloying 
addition TRIP steel 

Key 

• Stabilize austenite against the martensitic 
transformation during heat treatment 

• Suppress the formation of cementite 

The Properties of TRIP Steel 

5 Zhu, Acta Mat., 2012 



Two-Step Heat Treatment 
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Two-Step Heat Treatment 

Two-step heat treatment: (1) inter-critical annealing (IA) (2)-(3) bainite isothermal 
transformation (BIT) (3)-(4) final cooling to room temperature  
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Displacive Bainitic Transformation 

• The Gibbs free energies of bainitic ferrite and 
austenite are equal at T0. 

• 400 J/mole of the strain energy is considered for 
bainitic transformation as T0’.  

• The non-homogeneous C-distribution sustains the 
bainitic transformation. 

• The curve is fitting based on database TCFE6 V6.2  
• The empirical data is obtained from: Chang et al., Met. 

Mat. Tran. A, 1999 and Zhao et al., J. Mat. Sci., 2001 
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‘‘During the growth some 
carbon diffuses out of the ferrite 
grains into the surrounding 
austenite matrix. The higher the 
temperature of formation, the 
freer the ferrite is of 
supersaturated carbon.’’  

– Zener, 1912 

Heterogeneous Carbon Distribution 
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Heterogeneous Carbon Distribution (1) 
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Heterogeneous Carbon Distribution (2) 

DC >> df DC << df 
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Heterogeneous Carbon Distribution (3) 
 Caballero et al., 2011 
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𝜎𝑖 = 𝐾𝑖 1 + 𝜀0,𝑖𝜀
𝑛𝑖

 

𝜎 = 𝜎𝑖𝑉𝑓𝑖
𝑖

 

𝜎 = 𝜎𝐴 + 𝜎𝐵 − 𝜎𝐴
𝑤𝐶
𝛾
− 1.25

0.25
 

Phase 𝐾𝑖, MPa 𝜀0,𝑖 𝑛𝑖  

A 

Austenite 720 62 0.3 

BCC 475 55 0.27 

Martensite 2000 800 0.005 

B 

Austenite 1130 80 0.2 

BCC 720 50 0.175 

Martensite 2000 800 0.005 

𝒘𝑪 𝒘𝑴𝒏 𝒘𝑺𝒊 

0.29 1.42 1.41 

VfFer VfBai VfAus VfMar 𝑤𝐶
𝛾

 

A 55 28 17 0 1.25 

B 55 33 12 0 1.5 

Swift Model 

Jacques et al. Acta Mat., 2007 

Composition and micro-structure in tensile tests 

Mechanical Properties 
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𝑻𝑰𝑨 𝑻𝑩𝑰𝑻 

943 - 1142 350 - 943 

The temperature domains (Kelvin) 
for optimizing the heat treatment 

for Fe-0.32C-1.42Mn-1.56Si 

Optimum Heat Treatment for Fe-0.32C-1.42Mn-1.56Si 
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Case 1 

Case 2 

Case 3 



The Predictions for Case 1 
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Vf(Fer) 

Vf(Bai) Vf(Aus) Vf(Mar) 



The Predictions for Case 1 
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(1) Strain, % 

(2) Strength, MPa (3) WTN, MPa% 
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The Predictions for Case 2 

Vf(Fer) 

Vf(Bai) Vf(Aus) Vf(Mar) 



20 (2) Strength, MPa (3) WTN, MPa% 

The Predictions for Case 2 

(1) Strain, % 



(1) Strain, % (2) Strength, MPa (3) WTN, MPa% 
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In T0’ calculations, for most of the microstructures the predicted retained austenite 
is less than 5%. Therefore, these diagrams include all the predicted microstructures. 

The Predictions for Case 3 



Optimum Heat Treatment for Maximizing Toughness  
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Experiments 



Alloy Design Process 
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Genetic Algorithms - Schema 



𝒘𝑪 𝒘𝑴𝒏 𝒘𝑺𝒊 

0.1 - 0.5 0.5 - 2.5 0.8 - 1.5 

𝑻𝑰𝑨 𝑻𝑩𝑰𝑻 

943 - 1142 350 - 943 

Composition, wt%; Temperature, Kelvin 

Optimum Composition and Heat Treatment 

1. 6 bits memory for each variable 

2. VfAus > 5% 

3. Total alloying addition is less than 4 wt% 

4. 10 individuals in one generation, 1,000 generations 

5. Full equilibrium after IA treatment is considered 

6. T0 and para 𝛾 − 𝜃 concepts are utilized 
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The Predicted Fitness as Function of Mechanical Properties 
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𝑓 𝑥 =
𝑉𝑓𝐴𝑢𝑠

𝑤𝐶
𝛾
0.01 + 𝑉𝑓𝑀𝑎𝑟

 

Objective Function 



Chemical Composition vs Mechanical Properties 

(1) wC (2) wMn 

(3) wSi 27 

Fe-0.32C-1.42Mn-XSi 



𝒘𝑪 𝒘𝑴𝒏 𝒘𝑺𝒊 𝒘𝑨𝒍 

0.1 - 0.5 0.5 - 2.5 0.8 - 1.5 0.0 - 2.0 

𝒘𝑪𝒓 𝒘𝑵𝒊 𝑻𝑰𝑨 𝑻𝑩𝑰𝑻 

0.0 - 1.33 0.0 - 2.0 943 - 1142 350 - 943 

Composition, wt%; Temperature, Kelvin 

The Search in 6 Components, 2 Temperatures Domain 

1. 6 bits memory for each variable 

2. VfAus > 5% 

3. Total alloying addition is less than 4 wt% 

4. 10 individuals in one generation, 10,000 generations 

5. Full equilibrium after IA treatment is considered 

6. T0 and para 𝜸 − 𝜽 concepts are utilized 

28 



Fitness 

Predicted Fitness as Function of Mechanical Properties 

The predicted mechanical properties of Fe-C-Mn-Si-Al-Cr-Ni and Fe-C-Mn-Si alloys 
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𝒘𝑪 𝒘𝑴𝒏 𝒘𝑺𝒊 𝒘𝑨𝒍 

0.50 1.20 1.42 0.76 

𝒘𝑪𝒓 𝒘𝑵𝒊 𝑻𝑰𝑨 𝑻𝑩𝑰𝑻 

0.04 0.00 1044 575 



Summary 

Composition Selection 

Mn Cr Al Ni C Si 

CALPHAD Method 

Micro-Structure 

Genetic Algorithm 

Mechanical 
Properties 

Swift Model 

ϒ 

α 

M 

B 

Mechanical Model based on 
Irreversible Thermodynamics 
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Plastic Deformation Model Huang et al., 2008 

𝑑𝐸 = 𝑇𝑑𝑆 =
𝐶𝑏

𝑙
𝑑𝜏 = 𝑑𝑄 + 𝑑𝑊𝐸  

During the isothermal plastic deformation, the energy 
dissipation, 𝑑𝐸 can be attributed to (1) the exchange of the 
energy with the environment, 𝐝𝐐; (2) energy consumption by 
dislocation variation, 𝒅𝑾𝑬 

31 

Huang et al., 2008 



Plastic Deformation Model Huang et al., 2008 

• By energy conservation, 𝑑𝑄 can be calculated 

𝑑𝑄 = 𝑑𝑈 − 𝑑𝑊𝑀 

32 

Plastic Deformation Model – cont. 1 

𝑑𝑊𝐸 = 𝑊𝑔𝑒 +𝑊𝑔𝑙 +𝑊𝑎𝑛 

• Because of the dislocation: (1) Generation, 𝒅𝑾𝒈𝒆; (2) Glide, 

𝐝𝑾𝒈𝒍; (3) Annihilation, 𝒅𝑾𝒂𝒏 

𝑑𝐸 =
1

2
𝜇𝑏2𝑑𝜌𝑖𝑛

+ + 𝜏𝑏𝑙𝑑𝜌𝑖𝑛
+ +

1

2
𝜇𝑏2𝑑𝜌𝑖𝑛

− +
1

2
𝜇𝑏2𝑑𝜌𝑖𝑛 − 𝜏𝑖𝑛𝑑𝜀 

The energy dissipation can be estimated as:   



Shear Stress 

𝜏 = 𝜏0 + 𝜏𝑠 + 𝜏𝐻−𝑃 + 𝜏𝑖𝑛
2 + 𝜏𝑝

2 

To estimate the shear stress (𝜏), several mechanisms are taken into account: 

𝜏𝑠: solid-solution strengthening [Irvine1969; Varin1988; Zhao 2007] 

𝜏𝑖𝑛: dislocation strengthening inside the grain 

𝜏0: Peierls force [Irvine1969; Varin1988; Zhao 2007] 

𝜏𝑝: precipitation strengthening 

𝜏𝐻−𝑃: Hall-Petch effect [Irvine1969; Varin1988; Zhao 2007] 
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Plastic Deformation Model – cont. 2 



Irreversible Thermodynamics Huang et al., 2008 

This energy dissipation is also related to (1) the hardness parameter (𝜎∗), 
(2) flow stress (𝜏), and (3) strain rate (𝛾 ). It is proposed: 

𝑇𝑑𝑆 =
𝐶𝑏

𝑙
𝑑𝜏 

=
1

2
𝜇𝑏2𝑑𝜌𝑖𝑛

+ + 𝜏𝑏𝑙𝑑𝜌𝑖𝑛
+ +

1

2
𝜇𝑏2𝑑𝜌𝑖𝑛

− +
1

2
𝜇𝑏2𝑑𝜌𝑖𝑛 − 𝜏𝑖𝑛𝑑𝜀 
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Plastic Deformation Model – cont. 3 

𝑑𝜌𝑖𝑛 = 𝑑𝜌𝑖𝑛
+ − 𝑑𝜌𝑖𝑛

−  

𝑑𝜌𝑖𝑛
− =

𝜈0
𝛾 
𝑒𝑥𝑝 −

Δ𝐺

𝑘𝑇
𝜌𝑖𝑛𝑑𝛾 
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Ferrite 
EI Galindo-Nava et al., Mat. Sci. Eng. A 2012 

Ferrite + Martensite 
PEJ Rivera et al., Mat. Sci. Tech. 2012 

Stress-Strain Curves of Steel Alloys 



Micro-Structure & Plastic Deformation 

The plastic-deformed phases No deformed phases 
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Ferrite 

Bainite 

Austenite 

Martensite 

Austenite Film 

Plastic-Deformed Bainitic Ferrite 

Strain-Induced Martensite 

Plastic-Deformed Austenite 

Bainitic Ferrite Strengthening 

Austenite Strengthening 

Plastic-Deformed Martensite 
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Bainite Sub-Unit Size Garcia-Mateo et al., 2011 

1. Chemical Driving Force 
2. Austenite Yield Strength 
3. Temperature 

𝐶1 =  𝑥𝑛𝜔𝑥 + 𝜃1 

𝐻1 = 𝑡𝑎𝑛ℎ 𝐶1  
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Mechanical Response of Bainite Garcia-Mateo et al., 2011 

Training Prediction 



Micro-Structure & Plastic Deformation 

The plastic-deformed phases No deformed phases 
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Ferrite 

Bainite 

Austenite 

Martensite 

Austenite Film 

Plastic-Deformed Bainitic Ferrite 

Strain-Induced Martensite 

Plastic-Deformed Austenite 

Bainitic Ferrite Strengthening 

Austenite Strengthening 

Plastic-Deformed Martensite 
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Parameters for Olson-Cohen Model 
Jacques et al., Phil. Mag. A, 2001 

Composition O-C Param. 

1 

Fe-0.13C-1.42Mn-1.50Si 

α=20, β=0.94 

2 α=26, β=0.94 

3 α=20, β=0.70 

4 

Fe-0.16C-1.30Mn-0.38Si 

- 

5 α=57, β=1.41 

6 α=30, β=1.88 

7 α=49, β=2.08 

8 - 

𝑉𝑓𝛼′ = 1 − 𝑒𝑥𝑝 −𝛽 1 − 𝑒𝑥𝑝 −𝛼𝜀
𝑛

 

4 5 
6 
7 

𝜏YS = 𝜏0 + 𝜅𝐷−
1
2 

Olson et al., 1972, 1975 
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(b2) β 

(b1) α 

Parameters for Olson-Cohen Model 

Jacques et al., Philosophical Magazine A, 2001 

Strain Rate = 2 mm/min = 6.67E-4 s-1 

Composition TBIT, K ΔG, 
J/mol 

O-C Param. 

Fe-0.13C-1.42Mn-
1.50Si 

683 -1785 α=20, β=0.94 

633 -2239 α=26, β=0.94 

683 -1860 α=20, β=0.70 

Fe-0.16C-1.30Mn-
0.38Si 

- - - 

643 -2216 α=57, β=1.41 

643 -2216 α=30, β=1.88 

643 -2216 α=49, β=2.08 

643 -2216 - 

𝑉𝑓𝛼′ = 1 − 𝑒𝑥𝑝 −𝛽 1 − 𝑒𝑥𝑝 −𝛼𝜀
𝑛
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Goal 

C Mn Si TIA TBIT 

Max 0.5 3.0 3.0 950 800 

min 0.0 0.0 0.0 1100 500 

MSize 𝟐𝟓 𝟐𝟕 

The Optimum Conditions for TRIP Steels 

1. Total alloying addition is less than 4 
wt% 

2. 10 individuals in one generation, 
1,000 generations 

3. Full equilibrium after IA treatment is 
considered 

4. T0 and para 𝜸 − 𝜽 concepts are 
utilized 
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Phase Constituent and Performance 

Vf(Mar) 

Vf(Bai) 

Vf(Fer) 

Vf(Aus) 
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w(C) 

w(Si) 

w(Mn) 

Chemical Composition and Performance 
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C Mn Si TIA TBIT 

0.24 0.48 2.22 1051 601 

The Optimum Conditions 

Goal 

To achieve 15%-1600MPa, 
the recommended 
conditions are (wt%; K): 



Conclusion 

Composition Selection 
CALPHAD Method 

Micro-Structure 

Genetic Algorithm 

Mechanical 
Properties 

ϒ 

α 

M 

B 

Mechanical Model based on 
Irreversible Thermodynamics 
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Mn Al C Si 
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