

Materials Data Facility: A Distributed Model for the Materials Data Community 27 September 2017

Logan Ward¹ (loganw@uchicago.edu) Ben Blaiszik^{1,2} (blaiszik@uchicago.edu), Ian Foster (foster@uchicago.edu)^{1,2}, Ryan Chard² Jonathon Gaff¹, Kyle Chard¹, Jim Pruyne¹, Rachana Ananthakrishnan¹, Steven Tuecke¹ Michael Ondrejcek³, Kenton McHenry³, John Towns³ University of Chicago¹, Argonne National Laboratory², University of Illinois at Urbana-Champaign³

materialsdatafacility.org

globus.org

The Materials Data Facility Team

UC/Argonne

Ian Foster (PI)

Jim Pruyne

Rachana nanthakrishnar

Logan Ward

Jonathon Gaff

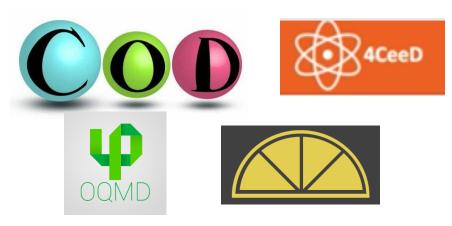
Ryan Chard

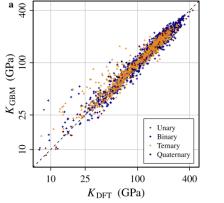
Steve Tuecke

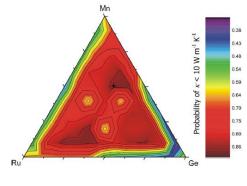
Kyle Chard

Stephen Rosen

John Towns (PI)

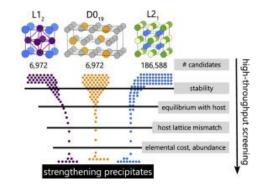

Kenton McHenry


Michal Ondrejcek

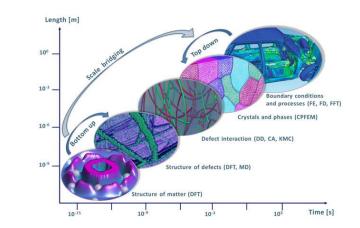

Data-Intensive Materials Science

Materials Databases

Machine Learning



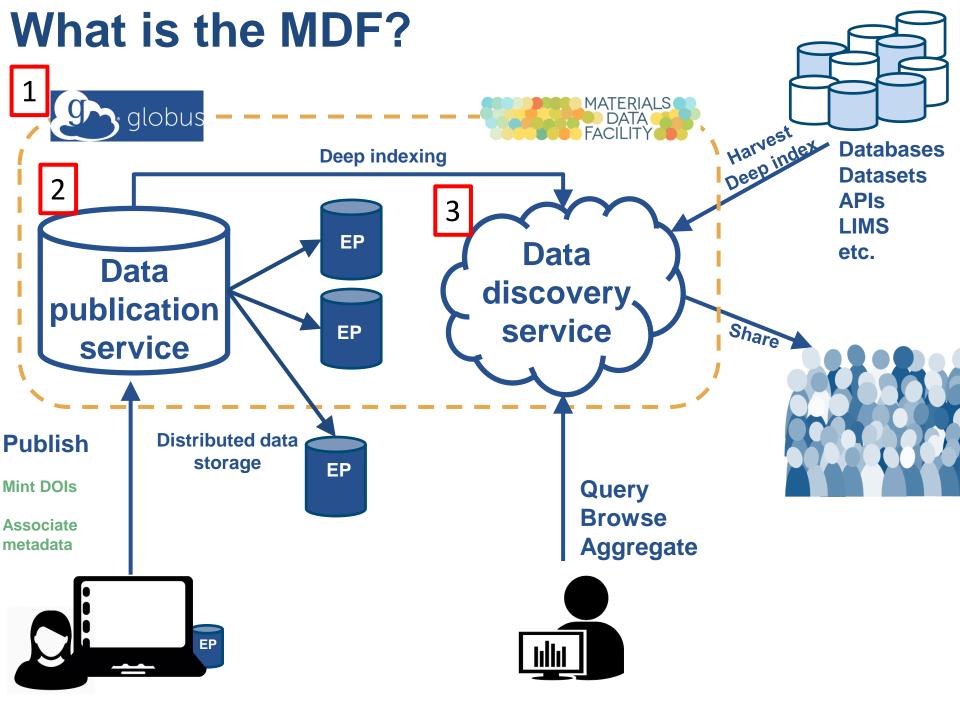
de Jong et al. Sci Rep. (2016)


Sparks et al. Scr. Mat. (2015)

High-Throughput Screening

Kirklin et al. Acta Mat. (2016)

Multi-scale Modeling


https://www.mpg.de/

Data-Intensive Materials Science

Science is becoming limited by the ability to handle data

- Where to get it?
- How to selectively share it?
- Where to store it?
- How to know what it is?
- How to build software that uses it?
- How to get others to share theirs?
- How to keep track of provenance?
-?

Our goal is to create infrastructure that provides easy answers to these questions

GLOBUS


Globus Background

Endpoint

- E.g. laptop or server running a Globus client (e.g. Dropbox client)
- Enables advanced file transfer and sharing
- Currently GridFTP, future GridFTP + HTTP

Some Key Features

- REST API for automation and interoperability
- Web UI for convenience
- Optimizes and verifies transfers
- Handles auto-restarts

313,101,618,927 MB

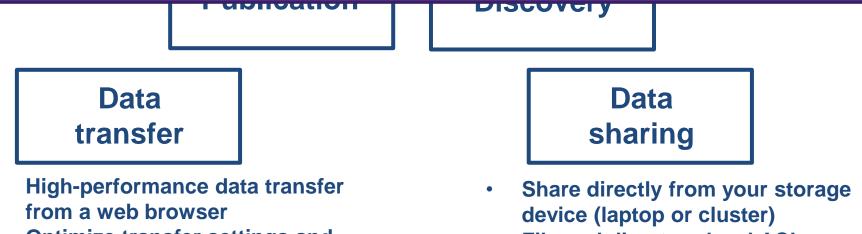
Globus Transfer

Transfer Files

RECENT ACTIVITY O 0 V 0 1

Endpoint Lenovo Laptop		Endpoint mdf-worker	\$
Path /~/UC/	Go	Path /~/	Go
select none 🍋 up one folder 🖒 refresh list	share 📃	select all t_ up one folder 🖒 refresh list share	=
Charge-Density-ML	Folder	AGNI-Mixing-Datasets	Folder
ChiDB	Folder	Charge-Density-ML	Folder
📒 Data-Swamp	Folder	esktop	Folder
📒 Globus-Tutorial	Folder	OQMD-Extraction	Folder
📒 Kotta	Folder	Schleife-Stopping-Power	Folder
MDF	Folder	Spark-Version	Folder
📕 Mixing Datasets	Folder	🛑 bin	Folder
Potentials	Folder	bryce-prb-2014	Folder
Schleife-Stopping-Power	Folder	💼 mdf	Folder
🛑 Transfer-Data	Folder	mdf-Deep3D	Folder
🛑 WholeTale	Folder	💼 ml-qh	Folder
🛑 agni-mdf-demo-26Mar17	Folder	new.config	Folder
🛑 angi-demo	Folder	🛑 oqmd-dl-analysis	Folder
🛑 pif-dft	Folder	💼 pif-dft	Folder
睯 agni-mdf-demo-26Mar17.zip	523.83 KB	e software	Folder
		🛑 wekafiles	Folder
		backup-single-tests.tar.gz	1.14 GB

Globus Platform-as-a-Service (PaaS)


Identity management

 create and manage a unique identity linked to external identities for authentication

- Manage user group creation and administration flows
- Share data with user groups

These services form the basis of the Materials Data Facility

 Optimize transfer settings and verify transfer integrity

•

 Add your laptop to the Globus cloud with Globus Connect Personal • File and directory-level ACLs

Data sharing and Globus

Host: ucrcc#midway:/~/share/gpntest/ name read write Path:/ Rachana Ananthakrishnan (ranantha) Rachana Ananthakrishnan (ranantha) Ian Foster (ian1) sily control who gains access to your data: Globus can use University/Laboratory credentials	E	Manage Shared Endpoint adpoi « shared endpoints list Pa		Go
Rachana Ananthakrishnan (ranantha) Ian Foster (ian1) Sily control who gains access to your data: Globus can use University/Laboratory credentials		CS name	Contraction of the second second	
sily control who gains access to your data: Globus can use University/Laboratory credentials		glo		qA
Globus can use University/Laboratory credentials		tes CA NA	ø o	36
You can establish groups of authorized users		can use University/Laboratory	credentials	

REST APIs, Clients, and Docs

- New Python SDK available
 - https://github.com/globusonline/globus-sdk-python
- Jupyter Notebook Examples
 - https://github.com/globus/globus-jupyter-notebooks
- Sample Data Portal
 - https://github.com/globus/globus-sample-data-portal

• (alpha) MDF Data Publication Service API

Endpoint search

Globus has over 8000 registered endpoints. To find endpoints of interest you can access powerful search capabilities via the SDK. For example, to search for a given string across the descriptive fields of endpoints (names, description, keywords):

```
search_str = "Globus Tutorial Endpoint"
endpoints = tc.endpoint_search(search_str)
print("==== Displaying endpoint matches for search: '{}' ===".format(search_str))
for ep in endpoints:
    print("{} ({})".format(ep["display_name"] or ep["canonical_name"], ep["id"]))
```

Restricting search scope with filters

There are also a number of default filters to restrict the search for 'my-endpoints', 'my-gcp-endpoints', 'recently-used', 'in-use', 'shared-by-me', 'shared-with-me')

search_str = None
endpoints = tc.endpoint_search(
 filter_fulltext=search_str, filter_scope="recently-used")
for ep in endpoints:
 print("{} ({)} .format(ep["display_name"] or ep["canonical_name"], ep["id"]))

Endpoint details

You can also retrieve complete information about an endpoint, including name, owner, location, and server configurations.

endpoint = tc.get_endpoint(tutorial_endpoint_1)
print("Display name", endpoint["display_name"])
print("Owner:", endpoint["owner_string"])
print("ID:", endpoint["id"])

Transfer

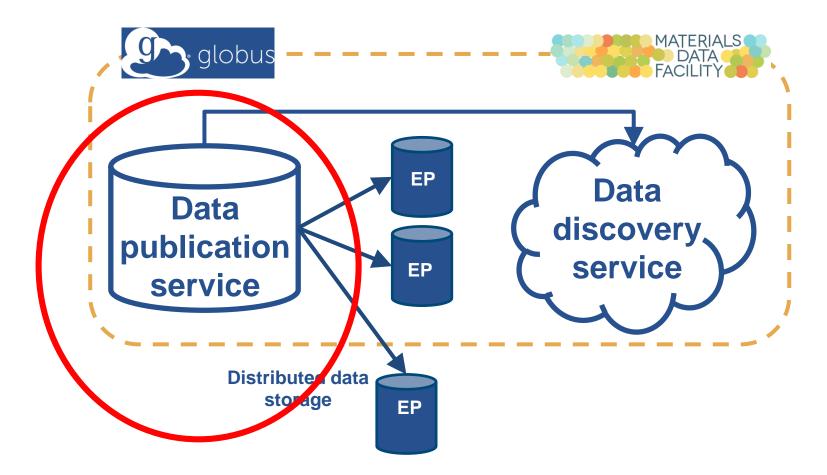
Creating a transfer is a two stage process. First you must create a description of the data you want to transfer (which also creates a unique submission_jd), and then you can submit the request to Globus to transfer that data.

If the submit_transfer fails, you can safely resubmit the same transfer_data again. The submission_id will ensure that this transfer request will be submitted once and only once.

```
# help(tc.submit_transfer)
source_endpoint_id = tutorial_endpoint_1
source_path = "/share/godata/"
```

dest_endpoint_id = tutorial_endpoint_2
dest_path = "/~/"

label = "My tutorial transfer"


Recursively transfer source path contents
tdata.add_item(source_path, dest_path, recursive=True)

Alternatively, transfer a specific file
tdata.add_item("/source/path/file.txt",
"/dest/path/file.txt"))

Ensure endpoints are activated
tc.endpoint_autoactivate(source_endpoint_id)
tc.endpoint_autoactivate(dest_endpoint_id)

submit_result = tc.submit_transfer(tdata)
print("Task ID:", submit_result["task_id"])

DATA PUBLICATION

Materials Data Publication Service

MDF Open Collection home page

Open collection for submission of materials-related datasets

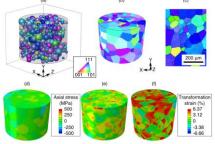
Submit to This Collection

Datasets in Collection (sorted by Submit Date in Descending order): 1 to 20 of 25

next >

Issue Date	Title	Author(s)
22-Sep-2017	Dataset for A New Generation of Effective Core Potentials for Correlated Calculations	Bennett, M. Chandler; Melton, Cody A.; Annaberdiyev, Abdulgani; Wang, Guangming; Shulenburger, Luke; Mitas, Lubos
11-Sep-2017	Probing the growth and melting pathways of a decagonal quasicrystal in real-time	Han, Insung; Xiao, Xianghui; Shahani, Ashwin J.
6-Sep-2017	Simulated microstructures of gamma' precipitates in cobalt-based superalloys	Jokisaari, Andrea M.; Naghavi, Shahab, Wolverton, Chris; Voorhees, Peter W.; Heinonen, Olle G.
23-Aug-2017	Solute transport database in Mg using ab initio and exact diffusion theory	Agarwal, Ravi; Trinkle, Dallas R.
29-Jun-2017	Characterizing the Unifying Thread in High Temperature Superconductors Using Realistic Simulations	Narayan, Awadhesh; Busemeyer, Brian; Wagner, Lucas K.

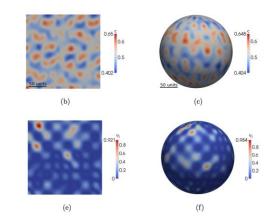
Datasets Are Citable


Title 1–20	Cited by	Year
Implications of Grain Size Variation in Magnetic Field Alignment of Block Copolymer Blends Y Rokhlenko, PW Majewski, SR Larson, P Gopalan, KG Yager, CO Osuji American Chemical Society		2017
X-ray Scattering Image Classification Using Deep Learning B Wang, K Yager, D Yu, M Hoai Applications of Computer Vision (WACV), 2017 IEEE Winter Conference on, 697-704	1	2017
Dataset of synthetic x-ray scattering images for classification using deep learning KG Yager, J Lhermitte, D Yu, B Wang, Z Guan, J Liu Materials Data Facility	1	2017
Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy Y Rokhlenko, P Majewski, S Larson, K Yager, P Gopalan, A Avgeropoulos, Bulletin of the American Physical Society 62		2017

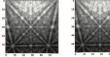
Publication via the NCSA

Data Volumes	15.0 TB 13.4 TB out		
Publication	50 Total datasets 94 Authors	14 Institutions	16 CHiMaD datasets >1000 Accesses
Pipeline	+30 Total datasets		+14 CHiMaD datasets

Publication Route #1: NCSA Storage


Grain Structure, Grain-averaged Lattice Strains, and Macro-scale Strain Data for Superelastic Nickel-**Titanium Shape Memory Alloy Polycrystal Loaded in Tension**

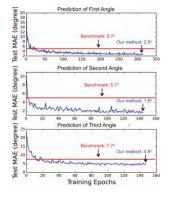
 Largest dataset to date (>1.5 TB). Showcases MDF unique capabilities and makes a unique dataset discoverable for code development, analysis, and benchmarking


Paranjape et al.

Phase Field Benchmark I Dataset

Jokisaari et al.

Electron Backscattering and Diffraction Datasets for Ni, Mg, Fe, Si


(214.45.58.86.124.45)

(222.43, 44.23, 182.46) (197.23 50.39 127.96)

(214.94, 59.17, 124.94)

Figure 2: Examples of four ERSD patterns, each denoted with its corresponding Euler angles ($\varphi_1, \Phi, \varphi_2$), used as regression target in deep net training. The upper left and upper right patterns are very similar, and also have a small difference in target angles.

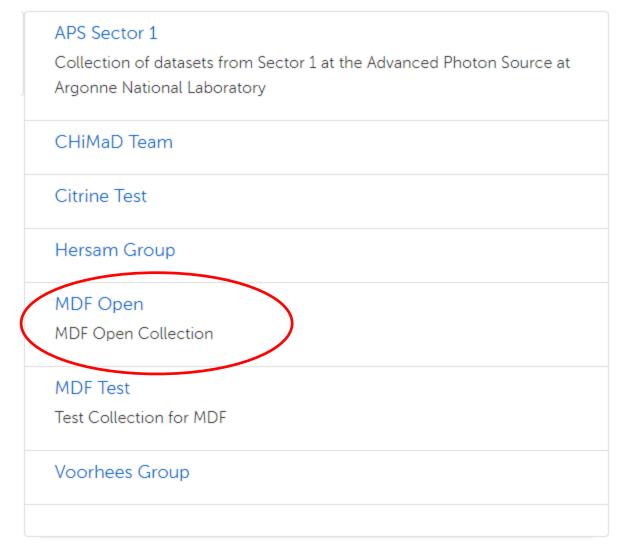
X-ray Scattering Image Classification Using Deep Learning

Ring		Halo		Diffuse low-q	
Isotropic	Anisotropic	Isotropic	Anisotropic	Isotropic	Anisotropic
	D			()	-
Real images			7	0	
Synthetic images	•		11	0	0
Syntheti	5	3		0	e –

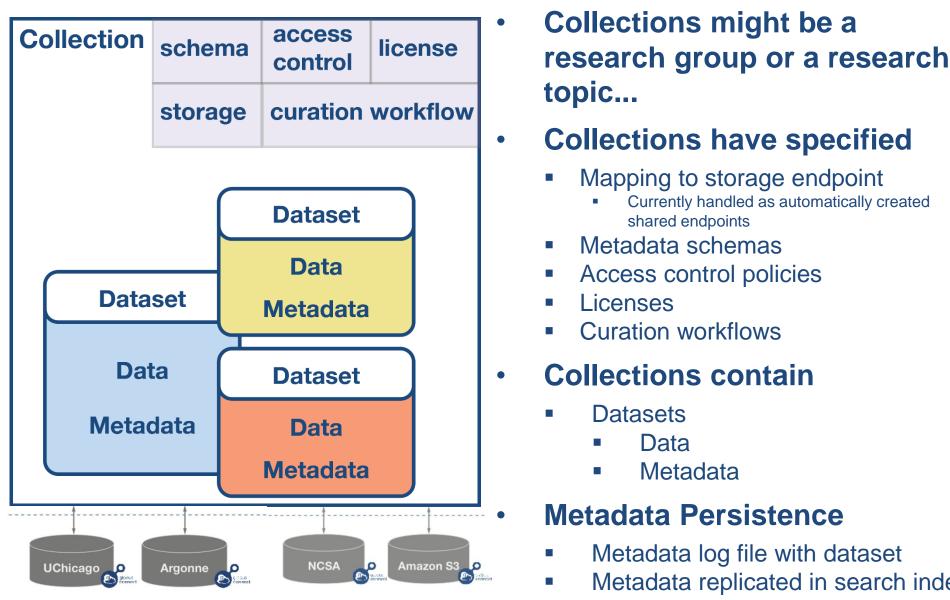
layer name	output size	kernels
conv1	112×112	7×7, 64, stride 2
		3×3 max pool, stride 2
conv2 x	56×56	1 × 1,64
conv2_x	30×30	3 × 3,64 × 3
		$1 \times 1,256$
		$1 \times 1, 128$
		$3 \times 3,128 \times 4$
conv3_x	28×28	$1 \times 1,512$
		1 × 1,256
		$3 \times 3,256 \times$
conv4_x	14×14	$1 \times 1,1024$
		$1 \times 1,512$
		$3 \times 3,512 \times$
conv5_x	7×7	$1 \times 1,2048$
pooling	1×1	average pooling
fc	1×1	2048×num of attributes

Marc De Graef et al.

Publish Large Datasets


 Distributed data model leverages
 Globus production capabilities for file transfer (i.e. dataset assembly), user authentication, and access control groups

313,101,618,927 MB


- 100s of TB of reliable storage @ NCSA, and more storage at Argonne
 - Globus endpoint at ncsa#mdf on Nebula
 - Expandable to many PBs as necessary
 - Automated tape backup for reliability (in progress)

Customization: Collection Model

Collections in this community

Customization: Collection Model

Share Data with Flexible ACLs

Share data publicly, with a set of users, or keep data private

Leverage Curation Workflows

- Collection administrators can specify the level of curation workflow required for a given collection e.g.
 - No curation
 - Curation of metadata only
 - Curation of metadata and files

Customize Metadata

Build a custom metadata schema for your specific research data

- Re-use existing metadata schemas
- Working in conjunction with NIST researchers to define these schemas

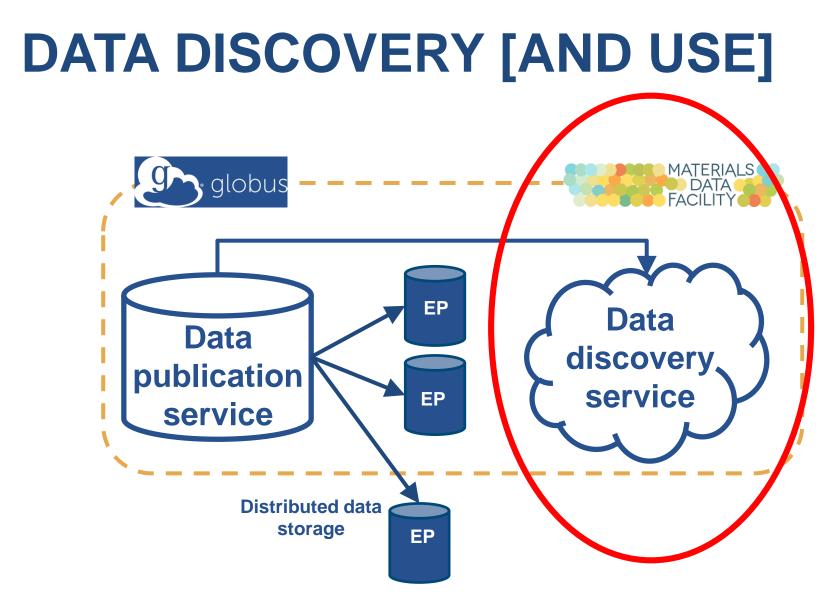
Future...

- Can we build a system that allows schema:
 - Inheritance
 - E.g. a schema "polymers" might inherit and expand upon the "base material" of NIST
 - Versioning
 - E.g. Understand contextually how to map fields between versions
 - Dependence
 - E.g. Allows the ability to build consensus around schemas

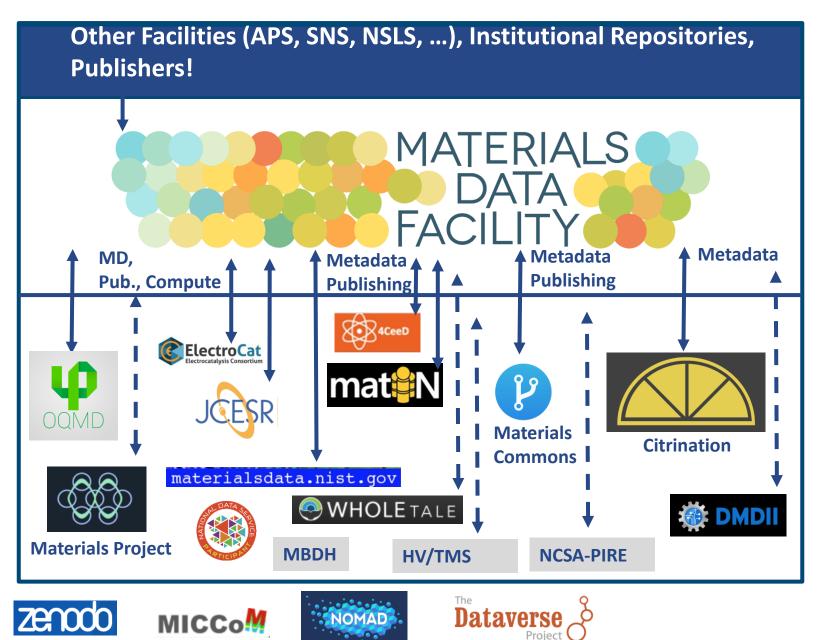
Example: NUCAPT Data Publication

Goal:

- Aid metadata capture
- Simplify data publication

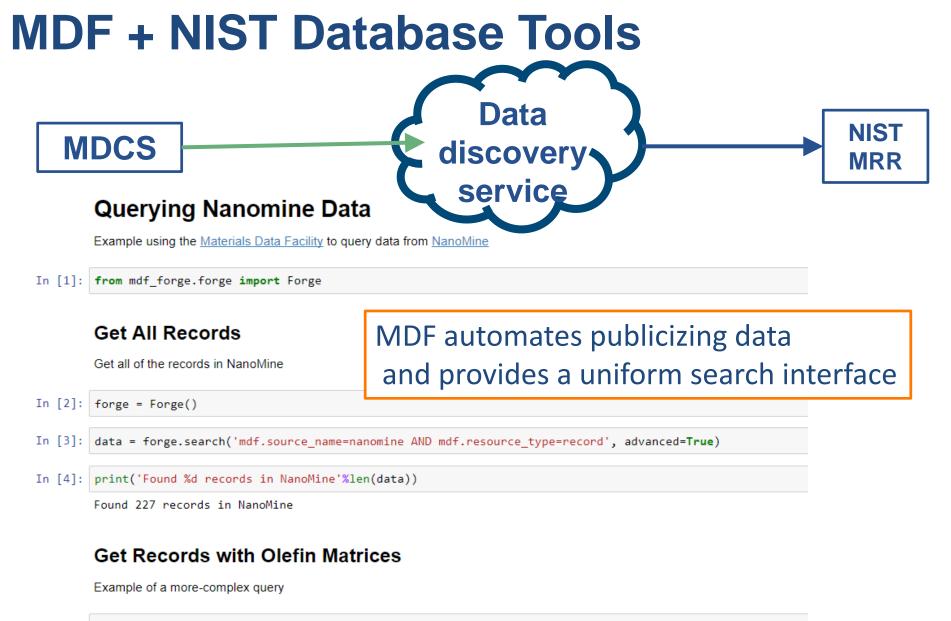

Approach: Lightweight web service

- Form-based metadata capture
- Automatic file management
- "One-click" data publication


Results:

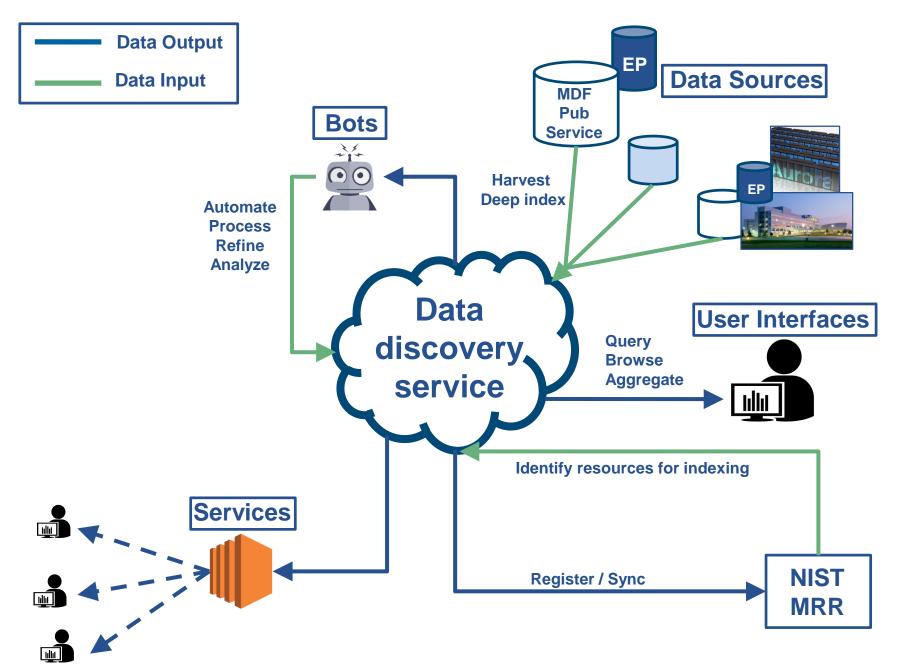
- Beta version deployed Sept '17

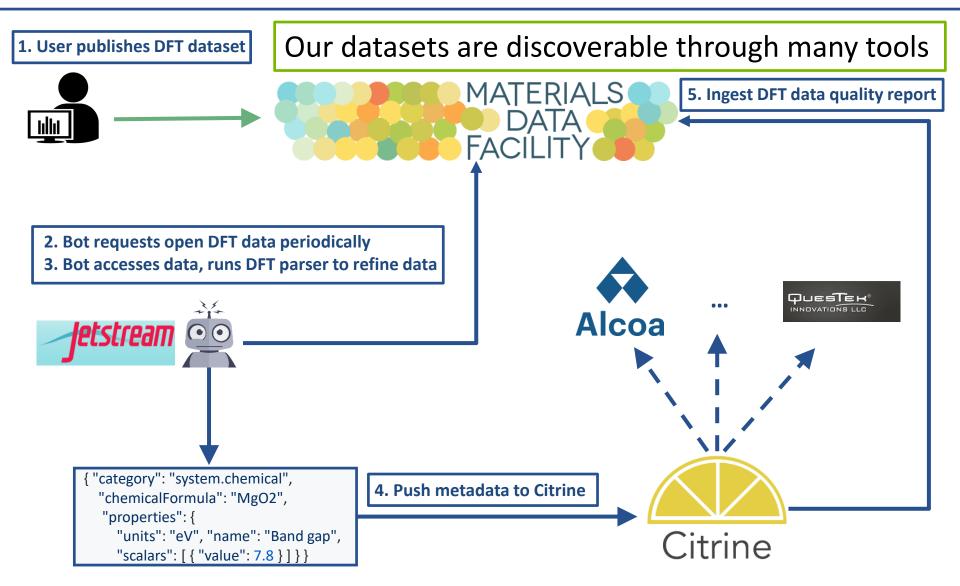
Sample Information Sample Title New Sample	Form-based metadata capt	ure
Short description of sample Sample Description		
Sample for a screenshot Longer-form description of the sample Sample Metadata		
Key	4 hr Delote	
Add Field Data Collection Me Metadata about how a sample was colle LEAP Model	18Jul17_Ward_0 Sample1 Recon1 Reconstruction2	
NUCAPT Model of LEAP used to collect data Evaporation Mode • ® Voltage • © Laser	 Reconstruction3 1D_Concentration_Profile 2D_Concentration_Map Component_Distribution Mass_Spectrum Proximity_Histogram 	
	Tip_Composition Visualization example.POS	
Organizes Co-locates		22



Part 1: Linking with the Data Community

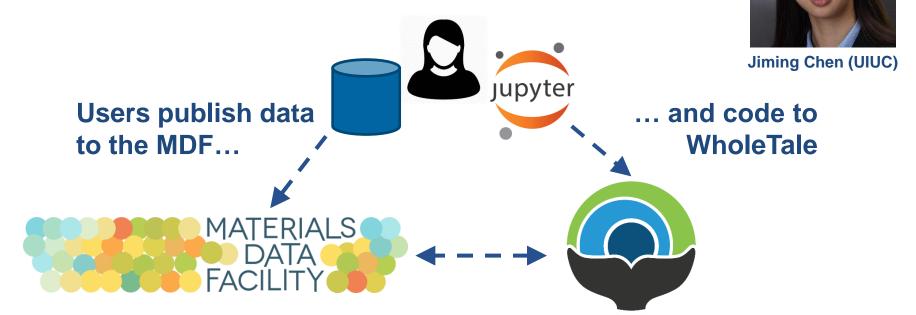
Many Databases, Single Search


globus Q search Dem	0	Logan Ward Log Out
Aluminum		Q mdf 🗸
Enable Advanced Searching Options		
Resource Type		You are searching as Logan Ward (LoganWard2012@u.northwestern.edu)
recorddataset	(1583) ^ (95) -	Search Results
Elements		AMCS - Aluminum
	 (1243) ▲ (760) (188) (167) 	Collection: AMCS Material Composition: Al4 AMCS - Aluminum
Si H N Ni	(167) (165) (101) (86)	Collection: AMCS Material Composition: Al4
S Pd	(58) (55) (51)	Aluminum Collection: NIST Material Measurement Laboratory Description: Aluminum has many outstanding attributes that lead to a wide range of applications, including: 1) Good
Tags	(356) 🔺	corrosion and oxidation resistance; 2) High electrical and thermal conductivities; 3) Low density; 4) High reflectivity; 5) High ductility and reasonably high strength; and 6) Relatively low cost. 6xxx and 6061 mentioned numerous time throughout
<pre>alloy parent_id</pre>	(95) (95)	AMCS - Aluminum
 Computational File Repository Ca Aluminum 	(89) (6) (5)	Collection: AMCS Material Composition: Al4 AMCS - Aluminum
 cif dif File Repository Categories::Chem aluminum: 	(5) (5) (3) (3)	Collection: AMCS Material Composition: Al4


In [6]: print('Found %d olefin records'%len(data))

Found 6 olefin records

MDF data discovery ecosystem



Registering Data with Other Databases

Reproducing data-driven MSE with MDF

- Summer Intern (Jiming Chen) reproducing and extending materials and ML papers with the MDF
- Joined our team with the NSF WholeTale project

Long-term goals:

- Assemble community-driven resource for ML tools/examples
- Use MDF/WholeTale to create benchmark challenges

Replicating Ward et al. 2016

Train a Model to Predict Formation Energy using the MDF

This notebook demonstrates how to create an model to predict the formation energy of crystalline materials using data from the MDF. Specifically, we will use data from the OQMD and train a model using the technique describe in a recent paper by Ward et al.

Get OQMD Training Set

Ward et al. trained their machine learning models on the formation enthalpies of crystalline compounds form the <u>OQMD</u>. Here, we extract the data using the copy of the OQMD available through the MDF

Download the Data

We first create a Forge instance, which simplifies performing search queries against the MDF.

In [3]: forge = Forge()

Then, we get all the converged results from the OQMD

In [4]: query_string = 'mdf.source_name:oqmd AND (oqmd.configuration:static OR oqmd.configuration:standard) AND oqmd.converged:True'
if quick_demo:
 query_string += " AND mdf.scroll_id:<10000"</pre>

APIs, Automation, and Examples

MDF Forge python package (under development)

- Interface to MDF services
- Helper functions for common tasks

Forge

Forge is the Materials Data Facility Python package to interface and leverage the MDF Data Discovery service. Forge allows users to perform simple queries and facilitiates moving and synthesizing results.

Installation

https://github.com/materials-data-facility/forge

pip install mdf_forge

For Developers

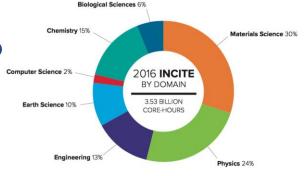
```
git clone https://github.com/materials-data-facility/forge.git
cd forge
pip install -e .
```

Tools for using these capabilities are available now

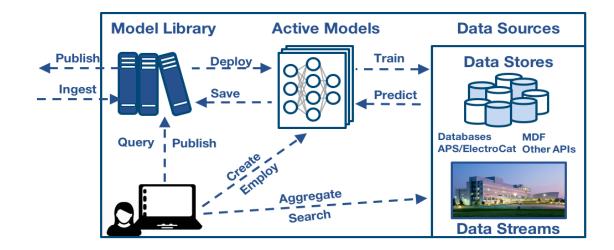
from mdf_forge.forge import Forge

mdf = Forge()

free text query
r = mdf.search("materials commons")


FUTURE DIRECTIONS

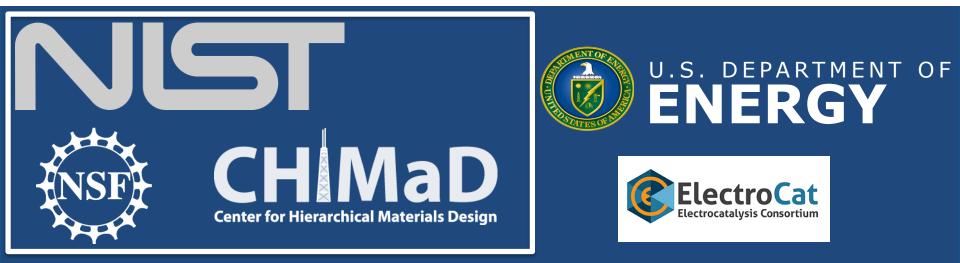
Besides what I just showed you


MDF – Argonne Leadership Computing Facility partnership

- MDF will work with materials users to publish and deep index results obtained via ALCF projects (i.e., INCITE, ADSP,)
 - Direct access to ALCF user base (~1000 /yr)
 - MDF will be incorporated in their existing UX flow (e.g., users can opt into data sharing at the beginning of the project)
 - Covers ~850M core hours of projects in 2017
- Well-positioned to become the *de facto* standard for data publication and discovery by opening of the A21 exascale system in 2021 Q1
 - 100x data increases expected
- Bootstrapping effort has been established to expand capabilities to ALCF users in physics, chemistry, bio, earth sciences
 - Seed effort to cover a separate team (ex: project management oversight by Blaiszik) to ensure continued focus of the MDF team on materials science related goals
 - Will also be used to investigate co-locating datasets with HPC to allow HPC operations on the data through simple interfaces like Jupyter

DLHub: Advancing Deep Learning Adoption

- Publish and share models and code linked with full training datasets
- Link database with HPC/Cloud computing resources
- Provide uniform interface for training, running models


Summary

Three Major Components of Materials Data Facility

1. Globus

- High speed data transfer
- Easy data sharing
- 2. Data Publication Service
 - Simple data publication, from your own
 - Free data publication via the NCSA
- 3. Data Discovery Service
 - Single search engine for many materials databases
 - Python API for accessing these databases

Thanks to our sponsors!

powered by amazon web services

Additional Hands-On Demos

- 1. Using Globus SDK
- 2. Publishing Data via MDF
- 3. NUCAPT Data Manager
- 4. MDF Search API and UI
- 5. Building ML Model with MDF